Viability and Antibacterial Activity of Bifidobacterium bifidum in Fermented Robusta Coffee for Diarrhea Treatment
Downloads
Background: Diarrhea can be treated with probiotic bacteria such as Bifidobacterium bifidum, which decreases the intestinal environment's pH to become acidic so that pathogenic bacteria cannot thrive. Objective: To make fermented coffee that can increase the number of probiotic bacteria Bifidobacterium bifidum and has antidiarrheal activity against pathogenic bacteria Escherichia coli. Methods: Robusta coffee (20.25% and 19.75%) was fermented using Saccharomyces cerevisiae, and then the probiotic bacteria Bifidobacterium bifidum was added. Unfermented coffee was compared with the same concentration (20.25% and 19.75%) to obtain four formulas. Organoleptic panelists tested all formulas to determine the best formula for fermented and non-fermented coffee. The number of Bifidobacterium bifidum and antibacterial activity was calculated on the optimum formulation using the Total Plate Count and Disc Diffusion Method. Result: The optimum formula obtained at fermented and unfermented coffee concentration was 20,25%. The number of probiotic bacteria Bifidobacterium bifidum growing in fermented and non-fermented coffee was 7.3 x 108 ± 32.4 and 3.1 x 108 ± 30.7 (p < 0.05). The diameter of the inhibition zone of the best fermented and non-fermented coffee was 11.5 ± 0.5 mm and 8.5 ± 0.5 mm, respectively (p < 0.05). Conclusion: Fermented coffee can increase the growth of the probiotic bacteria Bifidobacterium bifidum and has strong antibacterial activity against Escherichia coli bacteria.
Abdelhamid, A. G., Esaam, A. & Hazaa, M. M. (2018). Cell Free Preparations of Probiotics Exerted Antibacterial and antibiofilm Activities Against Multidrug Resistant E. coli. Saudi Pharmaceutical Journal; 26; 603–607. doi: 10.1016/j.jsps.2018.03.004.
Amine, K. M., Champagne, C. P., Salmieri, S., Britten, M., St-Gelais, D., Fustier, P. & Lacroix, M. (2014). Effect of Palmitoylated Alginate Microencapsulation on Viability of Bifidobacterium longum during Freeze-drying. Food Science and Technology; 56; 111-117. doi: 10.1016/j.lwt.2013.11.003.
Arslanoglu, S., Moro, G. E., Schmitt, J., Tandoi, L., Rizzardi, S. & Boehm, G. (2008). Early Dietary Intervention with a Mixture of Prebiotic Oligosaccharides Reduces the Incidence of Allergic Manifestations and Infections during the First Two Years of Life. Journal of Nutrition; 138; 1091–1095. doi: 10.1093/jn/138.6.1091.
Bermudez-Brito, M., Plaza-Diaz, J., Muñoz-Quezada, S., Gómez-Llorente, C. & Gil, A. (2012). Probiotic Mechanisms of Action. Annals of Nutrition and Metabolism; 61; 160–174.
Bondue, P. & Delcenserie, V. (2015). Genome of Bifidobacteria and Carbohydrate Metabolism. Korean Journal for Food Sciences of Animal Resources; 35; 1-9. doi: 10.5851/kosfa.2015.35.1.1.
Bressani, A. P. P., Martinez, S. J., Sarmento, A. B. I., Borém, F. M. & Schwan, R. F. (2020). Organic Acids Produced during Fermentation and Sensory Perception in Specialty Coffee using Yeast Starter Culture. Food Research International; 128; 108773. doi: 10.1016/j.foodres.2019.108773.
Chandramouli, Y., Gandhimati, R., Yasmeen, B. R., Vikram, A., Mahitha, B. & Imroz, S.M. (2004). Review On Cocrystal as An Approach with Newer Implication in Pharmaceutical Field. International Journal of Medicinal Chemistry and Analysis; 2; 91-100.
Chichlowski, M., German, J. B., Lebrilla, C. B. & Mills, D. A. (2011). The Influence of Milk Oligosaccharides on Microbiota of Infants: Opportunities for Formulas. Annual Review of Food Science and Technology; 2; 331-351. doi: 10.1146/annurev-food-022510-133743.
Da Mota, M. C. B., Batista, N. N., Rabelo, M. H. S., Ribeiro, D. E., Borém, F. M. & Schwan, R. F. (2020). Influence of Fermentation Conditions on the Sensorial Quality of Coffee Inoculated with Yeast. Food Research International; 136; 109482. doi: 10.1016/j.foodres.2020.109482.
Denkova, R., Goranov, B., Teneva, D., Denkova, Z. & Kostov, G. (2017). Antimicrobial Activity of Probiotic Microorganisms: Mechanisms of Interaction and Methods of Examination. Antimicrobial Research: Novel Bioknowledge and Educational Programs; 34; 201-212.
Evangelista, S. R., Miguel, M. G., de Souza Cordeiro, C., Silva, C. F., Pinheiro, A. C. & Schwan, R. F. (2014). Inoculation of Starter Cultures in a Semi-Dry Coffee (Coffea arabica) Fermentation Process. Food Microbiology; 44; 87–95.
Giannelli, F. R. (2017). PA-C Antibiotic-associated Diarrhea. Journal of the American Academy of Physician Assistants; 30; 46-47. doi: 10.1097/01.JAA.0000524721.01579.c9.
Gibson, G. R., Scott, K. P., Rastall, R. A., Tuohy, K. M., Hotchkiss, A., Dubert-Ferrandon, A., Gareau, M.,
Murphy, E. F., Saulnier, D. & Loh, G. (2010). Dietary Prebiotics: Current Status and New Definition. Food Science & Technology Bulletin Functional Foods; 7; 1–19.
Guarino, A., Guandalini, S. & Vecchio, A. (2015). Probiotics for Prevention and Treatment of Diarrhea. Journal of Clinical Gastroenterology; 49; 37-45. doi: 10.1097/MCG.0000000000000349.
Guimarí£es, A. C., Meireles, L. M., Lemos, M. F., Guimarí£es, M., Endringer, D. C., Fronza, M. & Scherer, R. (2019). Antibacterial Activity of Terpenes and Terpenoids Present in Essential Oils. Molecules; 24; 2471. doi: 10.3390/molecules24132471.
Haile, M. & Kang, W. H. (2019). The Role of Microbes in Coffee Fermentation and Their Impact on Coffee Quality. Journal of Food Quality; 2019; 1-16. doi: 10.1155/2019/4836709.
Holkem, A., Raddatz, G., Nunes, G., Cichoski, A., Jacob-Lopes, E., Grosso, C. & Menezes, C. (2016). Development and Characterization of Alginate Microcapsules Containing Bifidobacterium BB-12 Produced by Emulsification/Internal Gelation Followed by Freeze Drying. Food Science and Technology; 71; 302-308. doi: 10.1016/j.lwt.2016.04.012.
Kaczmarek, B. (2020). Tannic Acid with Antiviral and Antibacterial Activity as A Promising Component of Biomaterials-A Minireview. Materials; 13; 3224.
Liu, G., Song, Z., Yang, X., Gao, Y., Wang, C. & Sun, B. (2015). Antibacterial Mechanism of Bifidocin A, a Novel Broad-Spectrum Bacteriocin Produced by Bifidobacterium animalis BB04. Food Control; 62; 309-316. doi: 10.1016/j.foodcont.2015.10.033.
Louis, P., Flint, H. J. & Michel, C. (2016). How to Manipulate the Microbiota: Prebiotics. Advances in Experimental Medicine and Biology; 902; 119-142. doi: 10.1007/978-3-319-31248-4_9.
Macfarlane, G., Steed, H. & Macfarlane, S. (2008). Bacterial Metabolism and Health-Related Effects of Galacto-Oligosaccharides and Other Prebiotics. Journal of Applied Microbiology; 104; 305–344.
Mabhiza, D., Chitemerere, T. & Mukanganyama, S. (2016). Antibacterial Properties of Alkaloid Extracts from Callistemon citrinus and Vernonia adoensis against Staphylococcus aureus and Pseudomonas aeruginosa. International Journal of Medicinal Chemistry; 2016; 1-7. doi: 10.1155/2016/6304163.
Madsen, K. L. (2012). Enhancement of Epithelial Barrier Function by Probiotics. Journal of Epithelial Biology & Pharmacology; 5; 55–59.
Makras, L., Triantafyllou, V., Fayol-Messaoudi, D., Adriany, T., Zoumpopoulou, G., Tsakalidou, E., Servin, A. & DeVuyst, L. (2006). Kinetic Analysis of the Antibacterial Activity of Probiotic Lactobacilli Towards Salmonella enterica Serovar typhimurium Reveals a Role for Lactic Acid and Other Inhibitory Compounds. Research in Microbiology; 157; 241–247. doi: 10.1016/j.resmic.2005.09.002.
Marques, W., Raghavendran, V., Stambuk, B. U. & Gombert, A. K. (2016). Sucrose and Saccharomyces cerevisiae: A Relationship Most Sweet. Federation of European Microbiological Societies Yeast Research; 16; 1-16. doi: 10.1093/femsyr/fov107.
Mindarti, S., Zalizar, L., Damat, Saati, E. A. & Fajriani, S. (2020). Characterization of Fiber Fraction, Physical and Chemical Properties of Coffee Flour (Coffea sp.) as Functional Foodstuff for Diabetes Mellitus Patient. IOP Conferences Series: Earth and Environmental Science; 462; 1-10.
Mohammed, M., Raman, N., Alhoot, M. & Alwan, R. (2020). Antibacterial Activities of Allium sativum (Garlic) Extracts Against Staphylococcus aureus and Escherichia coli. European Journal of Molecular & Clinical Medicine; 7; 526-534.
Mohkam, M., Nezafat, N., Berenjian, A., Negahdaripour, M., Behfar, A. & Ghasemi, Y. (2016). Role of Bacillus genus
in the Production of Value-Added Compounds. Basel: Springer.
Osman, A., Tzortzis, G., Rastall, R. A. & Charalampopoulos, D. (2012). BbgIV is an Important Bifidobacterium β-galactosidase for the Synthesis of Prebiotic Galactooligosaccharides at High Temperatures. Journal of Agriculture and Food Chemistry; 60; 740–748.
Pandey, K. R., Naik, S. R. & Vakil, B. V. (2015). Probiotics, Prebiotics and Symbiotics - a Review. Journal of Food Science and Technology; 52; 7577–7587.
Pereira, G., Thomaz-Soccol, V., Pandey, A., Madeiros, A., Lara, J., Gollo, A. & Soccol, C. (2014). Isolation, Selection and Evaluation of Yeasts for Use in Fermentation of Coffee Beans by the Wet Process. International Journal of Food Microbiology; 188; 60-66. doi: 10.1016/j.ijfoodmicro.2014.07.008.
Plaza-Diaz, J., Ruiz-Ojeda, F. J., Gil-Campos, M. & Gil, A. (2019). Mechanisms of Action of Probiotics. Advances in nutrition; 10; 49–66. doi: 10.1093/advances/nmy063.
Pokusaeva, K., Fitzgerald, G. F. & van Sinderen, D. (2011). Carbohydrate metabolism in Bifidobacteria. Genes & Nutrition; 6; 285–306. doi: 10.1007/s12263-010-0206-6.
Riddle, M. S., DuPont, H. L. & Connor, B. A. (2016). ACG Clinical Guideline: Diagnosis, Treatment, and Prevention of Acute Diarrheal Infections in Adults. American Journal of Gastroenterology; 111; 602-622. doi: 10.1038/ajg.2016.126.
Rizal, S., Murhadi, Kustyawati, M. A. & Hasanudin, U. (2020). Growth Optimization of Saccharomyces cerevisiae and Rhizopus oligosporus during Fermentation to Produce Tempeh with High β-glucan Content. Biodiversitas; 21; 2667-2673. doi: 10.13057/biodiv/d210639.
Rosburg, V., Boylston, T. & White, P. (2010). Viability of Bifidobacteria Strains in Yogurt with Added Oat Beta-Glucan and Corn Starch During Cold Storage. Journal of Food Science; 75; 439–444. doi: 10.1111/j.1750-3841.2010.01620.x.
Sarkar, A. & Mandal, S. (2016). Bifidobacteria - Insight into Clinical Outcomes and Mechanisms of Its Probiotic Action. Microbiological Research; 192; 159-171. doi: 10.1016/j.micres.2016.07.001.
Saulnier, D. M., Gibson, G. R. & Kolida, S. (2008). In Vitro Effects of Selected Symbiotics on the Human Faecal Microbiota Composition. Federation of European Microbiological Societies Microbiology & Ecology; 66; 516–527.
Silva, C. F., Vilela, D. M., de SouzaCordeiro, C., Duarte, W. F., Dias, D. R. & Schwan, R. F. (2013). Evaluation of a Potential Starter Culture for Enhances Quality of Coffee Fermentation. World Journal of Microbiology & Biotechnology; 29; 235–247. doi: 10.1007/s11274-012-1175-2.
Stiverson, J., Williams, T., Chen, J., Adams, S., Hustead, D., Price, P., Guerrieri, J., Deacon, J. & Yu Z. (2014). A Comparative Evaluation of Prebiotic Oligosaccharides using In Vitro Cultures of Infant Fecal Microbiome. Applied and Environmental Microbiology; 80; 7388-7397. doi: 10.1128/AEM.02200-14.
Symonds, E. L., O'Mahony, C., Lapthorne, S., O'Mahony, D., Sharry, J. M., O'Mahony, L. & Shanahan, F. (2012). Bifidobacterium infantis 35624 Protects Against Salmonella-Induced Reductions in Digestive Enzyme Activity in Mice by Attenuation of the Host Inflammatory Response. Clinical and Translational Gastroenterology; 3; 15.
Wang, X., Wang, J., Sun, H., Xia, S., Duan, R. & Liang, J. (2015). Etiology of Childhood Infectious Diarrhea in a Developed Region of China: Compared to Childhood Diarrhea in a Developing Region and Adult Diarrhea in a Developed Region. PLoS ONE; 10; 1-14. doi: 10.1371/journal.pone.0142136.
Wang, Y., Wu, J., Lv, M., Shao, Z., Hungwe, M., Wang, J., Bai, X., Xie, J., Wang, Y. & Geng, W. (2021). Metabolism Characteristics of Lactic Acid Bacteria and the Expanding Applications in Food Industry. Frontiers in Bioengineering and Biotechnology; 9; 1-19. doi: 10.3389/fbioe.2021.612285.
Wulandari, S., Ainuri, M. & Sukartiko, A. C. (2021). Biochemical Content of Robusta Coffees Under Fully-Wash, Honey, and Natural Processing Methods. IOP Conferences Series: Earth and Environmental Science; 819; 1-9.
Xie, Y., Yang, W., Tang, F., Chen, X. & Ren, L. (2015). Antibacterial Activities of Flavonoids: Structure-Activity Relationship and Mechanism. Current Medicinal Chemistry; 22; 132–149. doi: 10.2174/0929867321666140916113443.
Yang, J. & Yang, H. (2019). Antibacterial Activity of Bifidobacterium breve Against Clostridioides difficile. Frontiers in Cellular and Infection Microbiology; 9; 1-12. doi: 10.3389/fcimb.2019.00288.
Zhou, Y., Zhu, X., Hou, H. et al. (2018). Characteristics of Diarrheagenic Escherichia coli among Children Under 5 Years of Age with Acute Diarrhea: A Hospital Based Study. BMC Infectious Disease; 18; 1-10. doi: 10.1186/s12879-017-2936-1.
Copyright (c) 2022 JURNAL FARMASI DAN ILMU KEFARMASIAN INDONESIA
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
1. The copyright of this journal belongs to the Editorial Board and Journal Manager with the author's knowledge, while the moral right of the publication belong to the author.
2. The formal legal aspect of journal publication accessibility refers to the Creative Commons Attribution-Non-Commercial-Share Alike (CC BY-NC-SA), which implies that the publication can be used for non-commercial purposes in its original form.
3. Every publication (print/electronic) is open access for educational, research, and library purposes. In addition to the objectives mentioned above, the editorial board is not responsible for copyright infringement