Effect of Suruhan Leaves (Peperomia pellucida L. Kunth) Extract on Triglyceride Blood Level in Diabetic Rats
Downloads
Background: Diabetes Mellitus causes complications, such as hypertriglyceridemia. Indonesia has biological wealth diversity that can be exploited in alternative medicine. One of which is Suruhan plants. Flavonoid contents in the plant extract can normalize blood triglyceride levels. Objective: This study aims to determine the effect of the Suruhan extract (Peperomia pellucida L. Kunth) on blood triglyceride levels in alloxan-induced diabetic white rats. Methods: The induction process used alloxan at a dose of 150mg/kgbw intraperitoneally to 12 rats. The rats were divided into 5 research groups, namely normal rats, diabetic rats, and diabetic rats were given various doses of extract. The treatment was carried out for 14 days. Blood samples for triglyceride examination were taken at the end of the study. Results: blood triglyceride levels were obtained in the normal group (127.67 mg/dl); and diabetic control group (395.67mg/dl); the dose group was 20mg/kg BW (216mg/dl); the dose group was 40 mg/kg BW (159.33 mg/dl) and the dose group was 80 mg/kg BW (143.33 mg/dl) in the statistical test with one way ANOVA (p <0.05) obtained significance with a value of p = 0.000. Conclusions: There is an influence of plant extracts (Peperomia pellucida [L.] Kunth) administration on the blood reduction of triglyceride levels in diabetic white rats induced by alloxan.
Abubakar, A. R. & Haque, M. (2021). Preparation of Medicinal Plants: Basic Extraction and Fractionation Procedures for Experimental Purposes. Journal of Pharmacy and Bioallied Sciences; 12; 1–10. doi: 10.4103/jpbs.JPBS_175_19.
Al-Attar, A. M. & Alsalmi, F. A. (2019). Effect of Olea Europaea Leaves Extract on Streptozotocin-Induced Diabetes in Male Albino Rats. Saudi Journal of Biological Sciences; 26; 118–128. doi: 10.1016/j.sjbs.2017.03.002.
Arifin, W. N. & Zahiruddin, W. M. (2017). Sample Size Calculation in Animal Studies Using Resource Equation Approach. Malaysian Journal of Medical Sciences; 24; 101–105. doi: 10.21315/mjms2017.24.5.11.
Bacanli, M., Dilsiz, S. A., Başaran, N., & Başaran, A. A. (2019). Effects of Phytochemicals Against Diabetes. Advances in Food and Nutrition Research; 89; 209–238. doi: 10.1016/bs.afnr.2019.02.006.
Hidayati, S. (2021). Antidiabetic Activity of Peperomia pellucida in Streptozotocin-Induced Diabetic Mice. Galenika Journal of Pharmacy; 7; 120–130. doi: 10.22487/j24428744.2021.v7.i2.15429.
Ibrahim, R. M., Abdelhafez, H. M., EL-Shamy, S. A. E. M., Eid, F. A., & Mashaal, A. (2023). Arabic Gum Ameliorates Systemic Modulation in Alloxan Monohydrate-Induced Diabetic Rats. Scientific Reports; 13; 1-11. doi: 10.1038/s41598-023-31897-x.
Infodatin. (2020). Infodatin 2020 Diabetes Mellitus. Jakarta: Kementerian Kesehatan Republik Indonesia.
International Diabetes Federation. (2021). IDF Diabetes Atlas 10th edition. Brussels: International Diabetes Federation.
Islamy, D. (2019). Efek Antihiperglikemik Ekstrak Etanol Tumbuhan Suruhan (Peperomia pellucida L. Kunth) terhadap Histopatologi Hati Mencit Jantan Yang Diinduksi Aloksan. Skripsi; Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Lampung, Bandar Lampung.
Kane, J. P., Pullinger, C. R., Goldfine, I. D., & Malloy, M. J. (2021). Dyslipidemia and Diabetes Mellitus: Role of Lipoprotein Species and Interrelated Pathways of Lipid Metabolism in Diabetes Mellitus. Current Opinion in Pharmacology; 61; 21–27. doi: 10.1016/j.coph.2021.08.013.
Khan, F., Sarker, M. M. R., Ming, L. C., Mohamed, I. N., Zhao, C., Sheikh, B. Y., Tsong, H. F., & Rashid, M. A. (2019). Comprehensive Review on Phytochemicals, Pharmacological and Clinical Potentials of Gymnema Sylvestre. Frontiers in Pharmacology; 10; 1-19. doi: 10.3389/fphar.2019.01223.
Kojta, I., Chacińska, M., & Błachnio-Zabielska, A. (2020). Obesity, Bioactive Lipids, and Adipose Tissue Inflammation in Insulin Resistance. Nutrients; 12; 1-19. doi: 10.3390/nu12051305.
Kumar, S., Mittal, A., Babu, D., & Mittal, A. (2021). Herbal Medicines for Diabetes Management and its Secondary Complications. Current Diabetes Reviews; 17; 437–456. doi: 10.2174/1573399816666201103143225.
Latres, E., Finan, D. A., Greenstein, J. L., Kowalski, A., & Kieffer, T. J. (2019). Navigating Two Roads to Glucose Normalization in Diabetes: Automated Insulin Delivery Devices and Cell Therapy. Cell Metabolism; 29; 1-19. doi: 10.1016/j.cmet.2019.02.007.
Lenzen, S. (2008). The Mechanisms of Alloxan- and Streptozotocin-Induced Diabetes. Diabetologia; 51; 216–226. doi: 10.1007/s00125-007-0886-7.
Luna-Castillo, K. P., Olivares-Ochoa, X. C., Hernández-Ruiz, R. G., Llamas-Covarrubias, I. M., Rodríguez-Reyes, S. C., Betancourt-Núñez, A., Vizmanos, B., Martínez-López, E., Muñoz-Valle, J. F., Márquez-Sandoval, F., & López-Quintero, A. (2022). The Effect of Dietary Interventions on Hypertriglyceridemia: From Public Health to Molecular Nutrition Evidence. Nutrients; 14; 1-60. doi: 10.3390/nu14051104.
Mahdi, C., Citrawati, P., & Hendrawan, V. F. (2020). The Effect of Rice Bran on Triglyceride Levels and Histopatologic Aorta in Rat (Rattus norvegicus) of High Cholesterol Dietary Model. IOP Conference Series: Materials Science and Engineering; 833; 1-10. doi: 10.1088/1757-899X/833/1/012022.
Men, T. T., Tu, L. T. K., Anh, N. T. K., Phien, H. H., Nhu, N. T. B., Uyen, N. T. T., Thu, N. T. A., Quy, T. N., & Khang, D. T. (2022). Antioxidant and In Vitro Antidiabetic Activities of Peperomia pellucida (L.) Kunth Extract. Veterinary Integrative Sciences; 20; 683–693. doi: 10.12982/VIS.2022.052.
Petersmann, A., Müller-Wieland, D., Müller, U. A., Landgraf, R., Nauck, M., Freckmann, G., Heinemann, L., & Schleicher, E. (2019). Definition, Classification and Diagnosis of Diabetes Mellitus. Experimental and Clinical Endocrinology and Diabetes; 127; 1-8. doi: 10.1055/a-1018-9078.
Pierzynowski, S. G., Stier, C., & Pierzynowska, K. (2023). Hypothesis that Alpha-Amylase Evokes Regulatory Mechanisms Originating in the Pancreas, Gut and Circulation, Which Govern Glucose/Insulin Homeostasis. World Journal of Diabetes; 14; 1341–1348. doi: 10.4239/wjd.v14.i9.1341.
Radenković, M., Stojanović, M., & Prostran, M. (2016). Experimental Diabetes Induced by Alloxan and Streptozotocin: The Current State of the Art. Journal of Pharmacological and Toxicological Methods; 78; 13–31. doi: 10.1016/j.vascn.2015.11.004.
Rao, U. S. M., Abdurrazak, M. & Mohd, K. S. (2016). Penyaringan Fitokimia, Jumlah Asai Kandungan Flavonoid dan Fenolik Pelbagai Ekstrak Pelarut Tepal Musa paradisiaca. Malaysian Journal of Analytical Sciences; 20; 1181–1190. doi: 10.17576/mjas-2016-2005-25.
Rehman, H. ur, Ullah, K., Rasool, A., Manzoor, R., Yuan, Y., Tareen, A. M., Kaleem, I., Riaz, N., Hameed, S., & Bashir, S. (2023). Comparative Impact of Streptozotocin on Altering Normal Glucose Homeostasis in Diabetic Rats Compared to Normoglycemic Rats. Scientific Report; 13; 1-6. doi: 10.1038/s41598-023-29445-8.
Salma, N., Paendong, J., Momuat, L., & Togubu, S. (2013). Antihiperglikemik Ekstrak Tumbuhan Suruhan (Peperomia pellucida L. kunth) Terhadap Tikus Wistar (Rattus norvegicus L.) yang Diinduksi Sukrosa. Jurnal ilmiah sains; 13; 116. doi: 10.35799/jis.13.2.2013.3055.
Sheriff, O. L., Olayemi, O., Taofeeq, A. O., Riskat, K. E., Ojochebo, D. E., & Ibukunoluwa, A. O. (2020). A New Model for Alloxan-Induced Diabetes Mellitus in Rats. Journal of Bangladesh Society of Physiologist; 14; 56–62. doi: 10.3329/jbsp.v14i2.44785.
Simha, V. (2020). Management of Hypertriglyceridemia. The BMJ; 371; 1-10. doi: 10.1136/bmj.m3109.
Sobczak, A. I. S., Blindauer, C. A., & Stewart, A. J. (2019). Changes in Plasma Free Fatty Acids Associated with Type-2 Diabetes. Nutrients; 11; 1-42. doi: 10.3390/nu11092022.
Thi, N. Q. N., An, T.N.T., Nguyen, O. B., Dung, L. T., Minh, L., Minh, L. V., & Nhan, L. T. H. (2020). Phytochemical Content and Antioxidant Activity in Aqueous and Ethanolic Extracts of Eryngium Foetidum L. IOP Conference Series: Materials Science and Engineering; 991; 1-10. doi: 10.1088/1757-899X/991/1/012026.
Ye, X., Kong, W., Zafar, M. I., & Chen, L. L. (2019). Serum Triglycerides as a Risk Factor for Cardiovascular Diseases in Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis of Prospective Studies. Cardiovascular Diabetology; 18; 1-10. doi: 10.1186/s12933-019-0851-z.
Yuliani, T., Dewijanti, I. D., & Banjarnahor, S. D. S. (2016). Antidiabetic Activity of Ethanolic Extract of Kalanchoe Pinnata Leaves in Alloxan-Induced Hyperglycaemic Rats. Indonesian Journal of Pharmacy; 27; 139–144. doi: 10.14499/indonesianjpharm27iss3pp139.
Copyright (c) 2024 JURNAL FARMASI DAN ILMU KEFARMASIAN INDONESIA
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
1. The copyright of this journal belongs to the Editorial Board and Journal Manager with the author's knowledge, while the moral right of the publication belong to the author.
2. The formal legal aspect of journal publication accessibility refers to the Creative Commons Attribution-Non-Commercial-Share Alike (CC BY-NC-SA), which implies that the publication can be used for non-commercial purposes in its original form.
3. Every publication (print/electronic) is open access for educational, research, and library purposes. In addition to the objectives mentioned above, the editorial board is not responsible for copyright infringement