Network Pharmacology Approach to Acalypha indica L. and Plumbago zeylanica L. As Anti-Rheumatoid Arthritis Candidates
Downloads
Background: Rheumatoid arthritis (RA) is a chronic autoimmune disease that can reduce quality of life. Currently, the goal of therapy is to achieve remission and prevent joint damage and disability. Acalypha indica L. and Plumbago zeylanica L. are known to be involved in rheumatoid pathogenesis. Objective: This study aimed to determine the compounds in Acalypha indica L. and Plumbago zeylanica L. that correlate with target proteins and anti-rheumatoid arthritis mechanisms. Methods: Plant compound data were collected from the KNApSAcK and IMPPAT databases, target protein data were collected using the KEGG pathway, validated using UniProt, and protein-protein interactions were analyzed using STRING. Target protein prediction using SwissTarget Prediction and SEA. Visualization of network pharmacology profiles using Cytoscape software based on the correlation between plant compounds and target proteins. Results: Acalypha indica L., which correlates with target proteins, contained quinine, gallotannin, 1,4 benzoquinone, chrysin, and kaempferol. For Plumbago zeylanica L., the compounds were vanillic acid, cinnamic acid, plumbagin, isoaffinetin, isoorientin, isovitexin, methylnaphthazarin, l-tryptophan, beta-sitosterol, stigmasterol, ficusin, suberosin, and quercetin 3-ol-rhamnoside. Conclusion: Network pharmacology visualization results showed that both Acalypha indica L. and Plumbago zeylanica L. correlated with disease target proteins in their respective rheumatoid arthritis signaling pathways.
Achenbach, J., Tiikkainen, P., Franke, L., & Proschak, E. (2011). Computational tools for polypharmacology and repurposing. In Future Medicinal Chemistry (Vol. 3, Issue 8, pp. 961–968). https://doi.org/10.4155/fmc.11.62
Ahmad Khan, M., Sarwar, A. H. M. G., Rahat, R., Ahmed, R. S., & Umar, S. (2020). Stigmasterol protects rats from collagen induced arthritis by inhibiting proinflammatory cytokines. International Immunopharmacology, 85. https://doi.org/10.1016/j.intimp.2020.106642
Amalia, R., Suyatno, S., & Sabila, F. (2021). Arthritis Assay on Combination of Red Ginger (Zingiber Officinale) and Secang Wood (Caesalpinia Sappan) Extract Towards Rat Oedema Induced by Complete Freund’s Adjuvant.
Anilkumar, K., Reddy, G. V., Azad, R., Yarla, N. S., Dharmapuri, G., Srivastava, A., Kamal, M. A., & Pallu, R. (2017). Evaluation of Anti-Inflammatory Properties of Isoorientin Isolated from Tubers of Pueraria tuberosa. Oxidative Medicine and Cellular Longevity, 2017. https://doi.org/10.1155/2017/5498054
Ao, Y., Wang, Z., Hu, J., Yao, M., & Zhang, W. (2023). Identification of essential genes and immune cell infiltration in rheumatoid arthritis by bioinformatics analysis. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-29153-3
Behl, T., Mehta, K., Sehgal, A., Singh, S., Sharma, N., Ahmadi, A., Arora, S., & Bungau, S. (2022). Exploring the role of polyphenols in rheumatoid arthritis. In Critical Reviews in Food Science and Nutrition (Vol. 62, Issue 19, pp. 5372–5393). Taylor and Francis Ltd. https://doi.org/10.1080/10408398.2021.1924613
Bharadvaja, N. (2017). Medicinal Plants in the Management of Cancer: A Review. International Journal of Complementary & Alternative Medicine, 9(2). https://doi.org/10.15406/ijcam.2017.09.00291
Birga, A. M., Ren, L., Luo, H., Zhang, Y., & Huang, J. (2022). Prediction of New Risk Genes and Potential Drugs for Rheumatoid Arthritis from Multiomics Data. Computational and Mathematical Methods in Medicine, 2022. https://doi.org/10.1155/2022/6783659
Bullock, J., Rizvi, S. A. A., Saleh, A. M., Ahmed, S. S., Do, D. P., Ansari, R. A., & Ahmed, J. (2019). Rheumatoid arthritis: A brief overview of the treatment. In Medical Principles and Practice (Vol. 27, Issue 6, pp. 501–507). S. Karger AG. https://doi.org/10.1159/000493390
Burmester, G. R., & Pope, J. E. (2017). Novel treatment strategies in rheumatoid arthritis. In The Lancet (Vol. 389, Issue 10086, pp. 2338–2348). Lancet Publishing Group. https://doi.org/10.1016/S0140-6736(17)31491-5
Caruso, F., Pedersen, J. Z., Incerpi, S., Kaur, S., Belli, S., Florea, R. M., & Rossi, M. (2022). Mechanism of Caspase-1 Inhibition by Four Anti-inflammatory Drugs Used in COVID-19 Treatment. International Journal of Molecular Sciences, 23(3). https://doi.org/10.3390/ijms23031849
Deng, G. M., Kyttaris, V. C., & Tsokos, G. C. (2016). Targeting syk in autoimmune rheumatic diseases. In Frontiers in Immunology (Vol. 7, Issue MAR). Frontiers Media S.A. https://doi.org/10.3389/fimmu.2016.00078
Deng, Y., Li, Q., Li, M., Han, T., Li, G., & Liu, Q. (2020). Network Pharmacology Identifies the Mechanisms of Sang-Xing-Zhi-Ke-Fang against Pharyngitis. Evidence-Based Complementary and Alternative Medicine, 2020. https://doi.org/10.1155/2020/2421916
dos Reis Neto, E. T., Kakehasi, A. M., de Medeiros Pinheiro, M., Ferreira, G. A., Lopes Marques, C. D., da Mota, L. M. H., dos Santos Paiva, E., Salviato Pileggi, G. C., Sato, E. I., Gomides Reis, A. P. M., Xavier, R. M., & Provenza, J. R. (2020). Revisiting hydroxychloroquine and chloroquine for patients with chronic immunity-mediated inflammatory rheumatic diseases. Advances in Rheumatology, 60(1). https://doi.org/10.1186/s42358-020-00134-8
Gfeller, D., Grosdidier, A., Wirth, M., Daina, A., Michielin, O., & Zoete, V. (2014). SwissTargetPrediction: A web server for target prediction of bioactive small molecules. Nucleic Acids Research, 42(W1). https://doi.org/10.1093/nar/gku293
Hayden, M. S., & Ghosh, S. (2014). Regulation of NF-κB by TNF family cytokines. In Seminars in Immunology (Vol. 26, Issue 3, pp. 253–266). Academic Press. https://doi.org/10.1016/j.smim.2014.05.004
Hong, M., Li, S., Tan, H. Y., Cheung, F., Wang, N., Huang, J., & Feng, Y. (2017). A network-based pharmacology study of the herb-induced liver injury potential of traditional hepatoprotective Chinese herbal medicines. Molecules, 22(4). https://doi.org/10.3390/molecules22040632
Hu, X. X., Wu, Y. jing, Zhang, J., & Wei, W. (2019). T-cells interact with B cells, dendritic cells, and fibroblast-like synoviocytes as hub-like key cells in rheumatoid arthritis. In International Immunopharmacology (Vol. 70, pp. 428–434). Elsevier B.V. https://doi.org/10.1016/j.intimp.2019.03.008
Huang, J., Li, L., Cheung, F., Wang, N., Li, Y., Fan, Z., Yin, F., Yang, J., Gao, R., He, Y., & Feng, Y. (2017). Network Pharmacology-Based Approach to Investigate the Analgesic Efficacy and Molecular Targets of Xuangui Dropping Pill for Treating Primary Dysmenorrhea. Evidence-Based Complementary and Alternative Medicine, 2017. https://doi.org/10.1155/2017/7525179
Huang, Q., Gao, W., Mu, H., Qin, T., Long, F., Ren, L., Tang, H., Liu, J., & Zeng, M. (2020). HSP60 Regulates Monosodium Urate Crystal-Induced Inflammation by Activating the TLR4-NF- κ B-MyD88 Signaling Pathway and Disrupting Mitochondrial Function. Oxidative Medicine and Cellular Longevity, 2020. https://doi.org/10.1155/2020/8706898
Huang, X. F., Zhang, J. L., Huang, D. P., Huang, A. S., Huang, H. T., Liu, Q., Liu, X. H., & Liao, H. L. (2020). A network pharmacology strategy to investigate the anti-inflammatory mechanism of luteolin combined with in vitro transcriptomics and proteomics. International Immunopharmacology, 86. https://doi.org/10.1016/j.intimp.2020.106727
IMPPAT: Indian Medicinal Plants, P. A. T. (2023a). Acalypha indica L. IMPPAT: Indian Medicinal Plants, Phytochemistry And Therapeutics. https://cb.imsc.res.in/imppat/phytochemical/Acalypha%20indica
IMPPAT: Indian Medicinal Plants, P. A. T. (2023b). Plumbago zeylanica L. IMPPAT: Indian Medicinal Plants, Phytochemistry And Therapeutics. https://cb.imsc.res.in/imppat/phytochemical/Plumbago%20zeylanica
Jing, M., Yang, J., Zhang, L., Liu, J., Xu, S., Wang, M., Zhang, L., Sun, Y., Yan, W., Hou, G., Wang, C., & Xin, W. (2021). Celastrol inhibits rheumatoid arthritis through the ROS-NF-κB-NLRP3 inflammasome axis. International Immunopharmacology, 98. https://doi.org/10.1016/j.intimp.2021.107879
Kim, S. H., Park, J. G., Lee, J., Yang, W. S., Park, G. W., Kim, H. G., Yi, Y. S., Baek, K. S., Sung, N. Y., Hossen, M. J., Lee, M. N., Kim, J. H., & Cho, J. Y. (2015). The dietary flavonoid kaempferol mediates anti-inflammatory responses via the src, syk, IRAK1, and IRAK4 molecular targets. Mediators of Inflammation, 2015. https://doi.org/10.1155/2015/904142
KNApSAcK Core System. (2023). Plumbago zeylanica L. KNApSAcK Core System. http://www.knapsackfamily.com/knapsack_core/result.php?sname=all&word=plumbago%20zeylanica
Kondo, N., Kuroda, T., & Kobayashi, D. (2021). Cytokine networks in the pathogenesis of rheumatoid arthritis. In International Journal of Molecular Sciences (Vol. 22, Issue 20). MDPI. https://doi.org/10.3390/ijms222010922
Le Rossignol, S., Ketheesan, N., & Haleagrahara, N. (2018). Redox-sensitive transcription factors play a significant role in the development of rheumatoid arthritis. In International Reviews of Immunology (Vol. 37, Issue 3, pp. 129–143). Taylor and Francis Ltd. https://doi.org/10.1080/08830185.2017.1363198
Li, R. L., Duan, H. X., Liang, Q., Huang, Y. L., Wang, L. Y., Zhang, Q., Wu, C. J., Liu, S. Q., & Peng, W. (2022). Targeting matrix metalloproteases: A promising strategy for herbal medicines to treat rheumatoid arthritis. In Frontiers in Immunology (Vol. 13). Frontiers Media S.A. https://doi.org/10.3389/fimmu.2022.1046810
Liu, J., Li, R.-L., Wei, S.-J., Jin, W., & Wu, C.-J. (2020). Cinnamomi ramulus exhibits anti-proliferative and anti-migration effects on MH7A rheumatoid arthritis-derived broblast-like synoviocytes through induction of apoptosis & cell arrest and suppression of matrix metalloproteinase. https://doi.org/10.21203/rs.2.24246/v1
Liu, T., Zhang, L., Joo, D., & Sun, S. C. (2017). NF-κB signaling in inflammation. In Signal Transduction and Targeted Therapy (Vol. 2). Springer Nature. https://doi.org/10.1038/sigtrans.2017.23
Loo, L. S. W., Soetedjo, A. A. P., Lau, H. H., Ng, N. H. J., Ghosh, S., Nguyen, L., Krishnan, V. G., Choi, H., Roca, X., Hoon, S., & Teo, A. K. K. (2020). BCL-xL/BCL2L1 is a critical anti-apoptotic protein that promotes the survival of differentiating pancreatic cells from human pluripotent stem cells. Cell Death and Disease, 11(5). https://doi.org/10.1038/s41419-020-2589-7
Mateen, S., Zafar, A., Moin, S., Khan, A. Q., & Zubair, S. (2016). Understanding the role of cytokines in the pathogenesis of rheumatoid arthritis. In Clinica Chimica Acta (Vol. 455, pp. 161–171). Elsevier B.V. https://doi.org/10.1016/j.cca.2016.02.010
Nirk, E. L., Reggiori, F., & Mauthe, M. (2020). Hydroxychloroquine in rheumatic autoimmune disorders and beyond. EMBO Molecular Medicine, 12(8). https://doi.org/10.15252/emmm.202012476
Noor, F., Rehman, A., Ashfaq, U. A., Saleem, M. H., Okla, M. K., Al-Hashimi, A., Abdelgawad, H., & Aslam, S. (2022a). Integrating Network Pharmacology and Molecular Docking Approaches to Decipher the Multi-Target Pharmacological Mechanism of Abrus precatorius L. Acting on Diabetes. Pharmaceuticals, 15(4). https://doi.org/10.3390/ph15040414
Noor, F., Rehman, A., Ashfaq, U. A., Saleem, M. H., Okla, M. K., Al-Hashimi, A., Abdelgawad, H., & Aslam, S. (2022b). Integrating Network Pharmacology and Molecular Docking Approaches to Decipher the Multi-Target Pharmacological Mechanism of Abrus precatorius L. Acting on Diabetes. Pharmaceuticals, 15(4). https://doi.org/10.3390/ph15040414
Ono, T., Okamoto, K., Nakashima, T., Nitta, T., Hori, S., Iwakura, Y., & Takayanagi, H. (2016). IL-17-producing γδT cells enhance bone regeneration. Nature Communications, 7. https://doi.org/10.1038/ncomms10928
Pai, F. T., Lu, C. Y., Lin, C. H., Wang, J., Huang, M. C., Liu, C. T., Song, Y. C., Ku, C. L., & Yen, H. R. (2021). Psoralea corylifolia l. Ameliorates collagen-induced arthritis by reducing proinflammatory cytokines and upregulating myeloid-derived suppressor cells. Life, 11(6). https://doi.org/10.3390/life11060587
Pan, D., Li, N., Liu, Y., Xu, Q., Liu, Q., You, Y., Wei, Z., Jiang, Y., Liu, M., Guo, T., Cai, X., Liu, X., Wang, Q., Liu, M., Lei, X., Zhang, M., Zhao, X., & Lin, C. (2018). Kaempferol inhibits the migration and invasion of rheumatoid arthritis fibroblast-like synoviocytes by blocking activation of the MAPK pathway. International Immunopharmacology, 55, 174–182. https://doi.org/10.1016/j.intimp.2017.12.011
Paradowska-Gorycka, A., Sowinska, A., Pawlik, A., Malinowski, D., Stypinska, B., Haladyj, E., Romanowska-Prochnicka, K., & Olesinska, M. (2017). FLT-1 gene polymorphisms and protein expression profile in rheumatoid arthritis. PLoS ONE, 12(3). https://doi.org/10.1371/journal.pone.0172018
Peng, H., Ren, S., Liu, Y., Zhou, H., Tang, X., Yang, J., Tian, J., Xu, P., Xu, H., & Wang, S. (2020). Elevated Expression of the Long Noncoding RNA IFNG-AS1 in the Peripheral Blood from Patients with Rheumatoid Arthritis. Journal of Immunology Research, 2020. https://doi.org/10.1155/2020/6401978
Peng, L., Zhu, N., Mao, J., Huang, L., Yang, Y., Zhou, Z., Wang, L., & Wu, B. (2020). Expression levels of CXCR4 and CXCL12 in patients with rheumatoid arthritis and its correlation with disease activity. Experimental and Therapeutic Medicine. https://doi.org/10.3892/etm.2020.8950
Qian, K., Zheng, X. X., Wang, C., Huang, W. G., Liu, X. B., Xu, S. Di, Liu, D. K., Liu, M. Y., & Lin, C. S. (2022). β-Sitosterol Inhibits Rheumatoid Synovial Angiogenesis Through Suppressing VEGF Signaling Pathway. Frontiers in Pharmacology, 12. https://doi.org/10.3389/fphar.2021.816477
Rubio, K., Molina-Herrera, A., Pérez-González, A., Hernández-Galdámez, H. V., Piña-Vázquez, C., Araujo-Ramos, T., & Singh, I. (2023). EP300 as a Molecular Integrator of Fibrotic Transcriptional Programs. In International Journal of Molecular Sciences (Vol. 24, Issue 15). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/ijms241512302
Ruwizhi, N., & Aderibigbe, B. A. (2020). Cinnamic acid derivatives and their biological efficacy. In International Journal of Molecular Sciences (Vol. 21, Issue 16, pp. 1–36). MDPI AG. https://doi.org/10.3390/ijms21165712
Schutyser, E., Struyf, S., & Van Damme, J. (2003). The CC chemokine CCL20 and its receptor CCR6. In Cytokine and Growth Factor Reviews (Vol. 14, Issue 5, pp. 409–426). Elsevier BV. https://doi.org/10.1016/S1359-6101(03)00049-2
Schwinghammer L. Terry, T. Joseph DiPiro, L.Vicki Ellingrod, & V. Cecily DiPiro. (2021). Pharmacotherapy Handbook Eleventh Edition (Vol. 11). https://www.facebook.com/groups/2202763316616203
Shorobi, F. M., Nisa, F. Y., Saha, S., Chowdhury, M. A. H., Srisuphanunt, M., Hossain, K. H., & Rahman, M. A. (2023). Quercetin: A Functional Food-Flavonoid Incredibly Attenuates Emerging and Re-Emerging Viral Infections through Immunomodulatory Actions. In Molecules (Vol. 28, Issue 3). MDPI. https://doi.org/10.3390/molecules28030938
Song, Y., & Fields, E. (2020). Pharmacological Advances of Chloroquine and Hydroxychloroquine: From Antimalarials to Investigative Therapies in COVID-19. In Natural Product Communications (Vol. 15, Issue 9).
Szklarczyk, D., Gable, A. L., Lyon, D., Junge, A., Wyder, S., Huerta-Cepas, J., Simonovic, M., Doncheva, N. T., Morris, J. H., Bork, P., Jensen, L. J., & Von Mering, C. (2019). STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Research, 47(D1), D607–D613. https://doi.org/10.1093/nar/gky1131
Szklarczyk, D., Morris, J. H., Cook, H., Kuhn, M., Wyder, S., Simonovic, M., Santos, A., Doncheva, N. T., Roth, A., Bork, P., Jensen, L. J., & Von Mering, C. (2017). The STRING database in 2017: Quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Research, 45(D1), D362–D368. https://doi.org/10.1093/nar/gkw937
Thitilertdecha, P., Tantithavorn, V., Poungpairoj, P., & Onlamoon, N. (2019). Determination of suppressive effect on human T-cell activation by hispidulin, nepetin, and vanillic acid. Immunopharmacology and Immunotoxicology, 41(6), 591–598. https://doi.org/10.1080/08923973.2019.1675165
Yuan, F. L., Li, X., Lu, W. G., Sun, J. M., Jiang, D. L., & Xu, R. S. (2013). Epidermal growth factor receptor (EGFR) as a therapeutic target in rheumatoid arthritis. In Clinical Rheumatology (Vol. 32, Issue 3, pp. 289–292). https://doi.org/10.1007/s10067-012-2119-9
Zhang, Y., Qi, Z., Wang, W., Wang, L., Cao, F., Zhao, L., & Fang, X. (2021). Isovitexin Inhibits Ginkgolic Acids-Induced Inflammation Through Downregulating SHP2 Activation. Frontiers in Pharmacology, 12. https://doi.org/10.3389/fphar.2021.630320
Zhao, S., Wang, Y., Hou, L., Wang, Y., Xu, N., & Zhang, N. (2020). Pentraxin 3 inhibits fibroblast growth factor 2 induced osteoclastogenesis in rheumatoid arthritis. Biomedicine and Pharmacotherapy, 131. https://doi.org/10.1016/j.biopha.2020.110628
Zhou, Q., Li, T., Fang, G., Pang, Y., & Wang, X. (2023). Bioactive Molecules against Rheumatoid Arthritis by Suppressing Pyroptosis. In Pharmaceuticals (Vol. 16, Issue 7). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/ph16070952
Copyright (c) 2024 JURNAL FARMASI DAN ILMU KEFARMASIAN INDONESIA
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
1. The copyright of this journal belongs to the Editorial Board and Journal Manager with the author's knowledge, while the moral right of the publication belong to the author.
2. The formal legal aspect of journal publication accessibility refers to the Creative Commons Attribution-Non-Commercial-Share Alike (CC BY-NC-SA), which implies that the publication can be used for non-commercial purposes in its original form.
3. Every publication (print/electronic) is open access for educational, research, and library purposes. In addition to the objectives mentioned above, the editorial board is not responsible for copyright infringement