Application of the Simplex Lattice Design Method to Determine the Optimal Formula of Diclofenac Sodium Nanoemulsion
Downloads
Background: The success of nanoemulsion preparation, with the aim of producing good characteristic values, is determined by the ratio of each component. The design of experiments (DoE) approach using the Simplex Lattice Design (SLD) method can be used to determine the optimal formula for nanoemulsions, with variable factors consisting of oleic acid, Tween 20:ethanol (4:1), and water. The observed response variables included droplet size, PDI, and pH. Objective: DoE can help reduce the energy, cost, and time needed to make the optimal formula for diclofenac sodium nanoemulsions. Methods: Nanoemulsions were prepared using low-energy emulsification. Their characteristics were evaluated and analyzed using Design Expert software. Results: The optimal nanoemulsion formulation consisted of 4.17% oleic acid, 37.5% emulsifier (Tween 20: ethanol, 4:1), and 58.33% water. The nanoemulsion characteristics were good, with 20.37 a droplet size, 0.42 PDI, of 4.75 pH. The observed values were not significantly different from the predicted values, and the formula could effectively trap 1% diclofenac sodium. Conclusion: The simplex lattice design method is very useful for pharmaceutical development, such as nanoemulsion optimization.
Annisa, R. (2021). Pengembangan self nanoemulsifying drug delivery system (SNEEDS) untuk penghantaran ekstrak etanol bawang dayak (Eleutherine palmifolia) dengan menggunakan pendekatan desain D-optimal. Disertasi: Universitas Airlangga.
Bashir, M., Ahmad, J., Asif, M., Khan, S. U. D., Irfan, M., Ibrahim, A. Y., Asghar, S., Khan, I. U., Iqbal, M. S., Haseeb, A., Khalid, S. H., & Abourehab, M. A. S. (2021). Nanoemulgel, an innovative carrier for diflunisal topical delivery with profound anti-inflammatory effect: in vitro and in vivo evaluation. International Journal of Nanomedicine, 16, 1457–1472. https://doi.org/10.2147/IJN.S294653.
Donthi, M. R., Munnangi, S. R., Krishna, K. V., Saha, R. N., Singhvi, G., & Dubey, S. K. (2023). Nanoemulgel: a novel nano carrier as a tool for topical drug delivery. Pharmaceutics, 15(164), 1–28. https://doi.org/10.3390/pharmaceutics15010164.
Duangjit, S., Mehr, L. M., Kumpugdee-Vollrath, M., & Ngawhirunpat, T. (2014). Role of simplex lattice statistical design in the formulation and optimization of microemulsions for transdermal delivery. Biological and Pharmaceutical Bulletin, 37(12), 1948–1957. https://doi.org/10.1248/bpb.b14-00549.
Fadhel, A. Y., & Rajab, N. A. (2022). Tizanidine nanoemulsion: formulation and in-vitro characterization. Journal of Pharmaceutical Negative Results, 13(3), 572–581. https://doi.org/10.47750/pnr.2022.13.03.086.
Fithri, N. A., Mardiyanto, M., Novita, R. P., & Andrean, V. (2017). Furosemide self nano emulsifying drug delivery system (SNEDDS) formulation comprising of capryol-90, polysorbate-80, and PEG-400 with simplex-lattice-design. Science and Technology Indonesia, 2(4), 85–88. https://doi.org/10.26554/sti.2017.2.4.85-88
Gul, U., Khan, M. I., Madni, A., Sohail, M. F., Rehman, M., Rasul, A., & Peltonen, L. (2022). Olive oil and clove oil-based nanoemulsion for topical delivery of terbinafine hydrochloride: in vitro and ex vivo evaluation. Drug Delivery, 29(1), 600–612. https://doi.org/10.1080/10717544.2022.2039805.
Hendradi, E., Hidayati, F. ., & Erawati, T. (2021). Characteristic of nanostructured lipid carrier (NLC) diclofenac diethylammonium as function of ratio of glyceryl monostearate and caprylic acid. Research Journal of Pharmacy and Technology l, 14(3), 1699–1704.
Hendradi, E., Rosita, N., & Rahmadhanniar, E. (2017). Effect of lipid ratio of stearic acid and oleic acid on characteristics of nanostructure lipid carrier (NLC) system of diethylammonium diclofenac. Indonesian Journal of Pharmacy, 28(4), 198–204. https://doi.org/10.14499/indonesianjpharm28iss4pp198.
Hidayat, I. R., Zuhrotun, A., & Sopyan, I. (2020). Design-expert software sebagai alat optimasi formulasi sediaan farmasi. Majalah Farmasetika, 6(1), 99–120. https://doi.org/10.24198/mfarmasetika.v6i1.27842.
Indrati, O., Martien, R., Rohman, A., & Nugroho, A. K. (2020). Application of simplex lattice design on the optimization of andrographolide self nanoemulsifying drug delivery system (SNEDDS). Indonesian Journal of Pharmacy, 31(2), 124–130. https://doi.org/10.14499/indonesianjpharm31iss2pp124.
Jadhav, R. P., Koli, V. W., Kamble, A. B., & Bhutkar, M. A. (2020). A review on nanoemulsion. Asian Journal of Research in Pharmaceutical Science, 10(2), 103–108. https://doi.org/10.5958/2231-5659.2020.00020.x.
Jintapattanakit, A. (2018). Preparation of nanoemulsions by phase inversion temperature (PIT) method. Pharmaceutical Sciences Asia, 45(1), 1–12. https://doi.org/10.29090/psa.2018.01.001.
Latifah, L., Isadiartuti, D., Yuwono, M., Rahman, F., & Hendradi, E. (2023). Physical properties, release and penetration tests of membrane-type diclofenac sodium patch using nanostructured lipid carrier as reservoir. Tropical Journal of Natural Product Research, 7(12), 5534–5539. https://doi.org/10.26538/tjnpr/v7i12.24.
Manjunatha, K. M., Ramana, M. ., & Satyaranayana, D. (2007). Design and evaluation of diclofenac sodium controlled drug delivery systems. Indian Journal of Pharmaceutical Sciences, May-June, 384–389.
Md, S., Alhakamy, N. A., Aldawsari, H. M., Kotta, S., Ahmad, J., Akhter, S., Alam, M. S., Khan, M. A., Awan, Z., & Sivakumar, P. M. (2020). Improved analgesic and anti-inflammatory effect of diclofenac sodium by topical nanoemulgel: formulation development—in vitro and in vivo studies. Journal of Chemistry, 2020, 1–10. https://doi.org/10.1155/2020/4071818
Nasser, N., Hathout, R. M., Abd-Allah, H., & Sammour, O. A. (2024). Simplex lattice design and machine learning methods for the optimization of novel microemulsion systems to enhance p-coumaric acid oral bioavailability: in vitro and in vivo studies. AAPS PharmSciTech, 25(3), 1–18. https://doi.org/10.1208/s12249-024-02766-1.
Nastiti, C. M. R. R., Ponto, T., Abd, E., Grice, J. E., Benson, H. A. E., & Roberts, M. S. (2017). Topical nano and microemulsions for skin delivery. Pharmaceutics, 9(4), 1–25. https://doi.org/10.3390/pharmaceutics9040037.
Poggio, C., Ceci, M., Beltrami, R., Colombo, M., & Dagna, A. (2015). Viscosity of endodontic irrigants: influence of temperature. Dental Research Journal, 12(5), 425–430. https://doi.org/10.4103/1735-3327.166189.
Rao, M., Reddy, R. B., & Kumar, R. (2015). Formulation and development and evaluation of diclofenac sodium microemulsion. Indo American Journal of Pharmaceutical Sciences, 2(12), 1673–1688.
Rowe, R. C., Sheskey, P. J., Cook, W. G., Quinn, M. E., Owen, S. C., & Weller, P. J. (2012). Handbook of Pharmaceutical Excipients, 7th Ed. London: The Pharmaceutical Press.
Sacha, M., Faucon, L., Hamon, E., Ly, I., & Haltner-Ukomadu, E. (2019). Ex vivo transdermal absorption of a liposome formulation of diclofenac. Biomedicine and Pharmacotherapy, 111(December 2018), 785–790. https://doi.org/10.1016/j.biopha.2018.12.079.
Santana, R. C., Perrechil, F. A., & Cunha, R. L. (2013). High- and low-energy emulsifications for food applications: a focus on process parameters. Food Engineering Reviews, 5(2), 107–122. https://doi.org/10.1007/s12393-013-9065-4.
Shaker, D. S., Ishak, R. A. H., Ghoneim, A., & Elhuoni, M. A. (2019). Nanoemulsion: a review on mechanisms for the transdermal delivery of hydrophobic and hydrophilic drugs. Scientia Pharmaceutica, 87(3). https://doi.org/10.3390/scipharm87030017.
Sintov, A.., & Shapiro, L. (2004). New microemulsion vehicle facilitates percutaneous penetration in vitro and cutaneous drug bioavaibility. Journal of Controlled Release 95, 173–183.
Copyright (c) 2024 JURNAL FARMASI DAN ILMU KEFARMASIAN INDONESIA
![Creative Commons License](http://i.creativecommons.org/l/by-nc-sa/4.0/88x31.png)
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
1. The copyright of this journal belongs to the Editorial Board and Journal Manager with the author's knowledge, while the moral right of the publication belong to the author.
2. The formal legal aspect of journal publication accessibility refers to the Creative Commons Attribution-Non-Commercial-Share Alike (CC BY-NC-SA), which implies that the publication can be used for non-commercial purposes in its original form.
3. Every publication (print/electronic) is open access for educational, research, and library purposes. In addition to the objectives mentioned above, the editorial board is not responsible for copyright infringement