Curcuma caesia. Roxb as a Potential Inhibitor of STAT3 and EGFR: a Molecular Docking Approach in Diabetic Nephropathy
Background: Diabetes mellitus (DM) is a chronic disorder marked by persistent hyperglycemia, leading to various complications, including diabetic nephropathy (DN). The STAT3-EGFR signaling axis plays a crucial role in the development and progression of diabetic nephropathy, with EGFR activation leading to STAT3 phosphorylation. Curcuma caesia Roxb, rich in curcuminoids, shows promise in managing DN due to its anti-inflammatory and antioxidant properties. This study aims to predict the inhibitory potential of Curcuma caesia compounds on STAT3 and EGFR in DN using molecular docking techniques. Methods: This study utilized molecular docking to evaluate the inhibitory potential of Curcuma caesia compounds on STAT3 and EGFR. Protein structures were obtained from the RCSB database and prepared using Biovia Discovery Studio. Redocking validated the method via RMSD analysis, while docking simulations assessed binding energy (ΔG). ADMET predictions analyzed physicochemical properties and toxicity, ensuring the compounds' suitability as drug candidates. Results: Redocking process validated the method, with RMSD values indicating accuracy. Curcumin (-9.71) and ar-Curcumene (-5.02) showed the lowest binding energy for both proteins, suggesting strong interactions. Visualization revealed significant amino acid interactions, particularly involving hydrogen bonds. Additionally, pharmacokinetic and toxicity analyses indicated that most compounds are suitable drug candidates, exhibiting good absorption, distribution, and safety profiles, thus supporting Curcuma caesia's therapeutic promise in diabetic nephropathy management. Conclusion: Curcuma caesia demonstrates significant potential as a therapeutic agent for diabetic nephropathy, with favorable molecular interactions, strong binding affinity to STAT3 and EGFR, and promising pharmacokinetic and safety profiles.
Abd Allah, E. S., & Gomaa, A. M. (2015). Effects of curcumin and captopril on the functions of kidney and nerve in streptozotocin-induced diabetic rats: role of angiotensin converting enzyme 1. Applied Physiology, Nutrition, and Metabolism 40(10), 1061–1067. https://doi.org/10.1139/apnm-2015-0145
Abdul-Hammed, M., Adedotun, I. O., Olajide, M., Irabor, C. O., Afolabi, T. I., Gbadebo, I. O., Rhyman, L., & Ramasami, P. (2022). Virtual screening, ADMET profiling, PASS prediction, and bioactivity studies of potential inhibitory roles of alkaloids, phytosterols, and flavonoids against COVID-19 main protease (Mpro). Natural Product Research, 36(12), 3110–3116. https://doi.org/10.1080/14786419.2021.1935933
Abdullah, S. S., Putra, P. P., Antasionasti, I., Rundengan, G., Suoth, E. J., Abdullah, R. P. I., & Abdullah, F. (2021). ANALISIS SIFAT FISIKOKIMIA, FARMAKOKINETIK DAN TOKSIKOLOGI PADA PERICARPIUM PALA (Myristica fragransa) SECARA ARTIFICIAL INTELLIGENCE. Chemistry Progress, 14(2), 81. https://doi.org/10.35799/cp.14.2.2021.37112
Afzal, O., Yusuf, M., Ahsan, M. J., Altamimi, A. S. A., Bakht, M. A., Ali, A., & Salahuddin. (2022). Chemical Modification of Curcumin into Its Semi-Synthetic Analogs Bearing Pyrimidinone Moiety as Anticancer Agents. Plants, 11(20). https://doi.org/10.3390/plants11202737
Akalu, Y., & Birhan, A. (2020). Peripheral Arterial Disease and Its Associated Factors among Type 2 Diabetes Mellitus Patients at Debre Tabor General Hospital, Northwest Ethiopia. Journal of Diabetes Research, 2020. https://doi.org/10.1155/2020/9419413
Aini, Z.Q., Wijayanti, T., Puspitasari, A. C. (2024). Analisis Efektivitas Kunyit Hitam (Curcuma caesia Roxb.) Dalam Penurunan Kadar Mikroalbumin dan Serum Kreatinin Pada Tikus Diabetes Nefropati. Healthy Indonesian Journal, 3(2).
Badal, S. S., & Danesh, F. R. (2014). New insights into molecular mechanisms of diabetic kidney disease. American Journal of Kidney Diseases, 63(2 SUPPL.2). https://doi.org/10.1053/j.ajkd.2013.10.047
Bayoumi, H. H., Ibrahim, M. K., Dahab, M. A., Khedr, F., & El-Adl, K. (2024). Rationale, in silico docking, ADMET profile, design, synthesis and cytotoxicity evaluations of phthalazine derivatives as VEGFR-2 inhibitors and apoptosis inducers. RSC Advances, 14(37), 27110–27121. https://doi.org/10.1039/d4ra04956j
Chen, M., Sun, J., Yao, H., Gong, F., Cai, L., Wang, C., Shao, Q., & Wang, Z. (2023). Analysis of genetic and chemical variability of five Curcuma species based on DNA barcoding and HPLC fingerprints. Frontiers in Plant Science, 14. https://doi.org/10.3389/fpls.2023.1229041
Dong, J., Wang, N. N., Yao, Z. J., Zhang, L., Cheng, Y., Ouyang, D., Lu, A. P., & Cao, D. S. (2018). Admetlab: A platform for systematic ADMET evaluation based on a comprehensively collected ADMET database. Journal of Cheminformatics, 10(1). https://doi.org/10.1186/s13321-018-0283-x
Elendu, C., John Okah, M., Fiemotongha, K. D. J., Adeyemo, B. I., Bassey, B. N., Omeludike, E. K., & Obidigbo, B. (2023). Comprehensive advancements in the prevention and treatment of diabetic nephropathy: A narrative review. Medicine (United States), 102(40), E35397. https://doi.org/10.1097/MD.0000000000035397
Ghasemi, H., Einollahi, B., Kheiripour, N., Hosseini-Zijoud, S. R., & Nezhad, M. F. (2019). Protective effects of curcumin on diabetic nephropathy via attenuation of kidney injury molecule 1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL) expression and alleviation of oxidative stress in rats with type 1 diabetes. Iranian Journal of Basic Medical Sciences, 22(4), 376–383. https://doi.org/10.22038/ijbms.2019.31922.7674
Goyal, R., Singhal, M., & Jialal, I. (2023). Type 2 Diabetes. StatPearls Publishing.
Grover, M., Shah, K., Khullar, G., Gupta, J., & Behl, T. (2019). Investigation of the utility of Curcuma caesia in the treatment of diabetic neuropathy. In Journal of Pharmacy and Pharmacology, 71(5_ 725–732. Blackwell Publishing Ltd. https://doi.org/10.1111/jphp.13075
Ibrahim, M. T., Uzairu, A., Shallangwa, G. A., & Uba, S. (2020). In-silico activity prediction and docking studies of some 2, 9-disubstituted 8-phenylthio/phenylsulfinyl-9h-purine derivatives as Anti-proliferative agents. Heliyon, 6(1). https://doi.org/10.1016/j.heliyon.2020.e03158
Ibrahim, N. N. A., Wan Mustapha, W. A., Sofian-Seng, N. S., Lim, S. J., Mohd Razali, N. S., Teh, A. H., Rahman, H. A., & Mediani, A. (2023). A Comprehensive Review with Future Prospects on the Medicinal Properties and Biological Activities of Curcuma caesia Roxb. In Evidence-based Complementary and Alternative Medicine (Vol. 2023). Hindawi Limited. https://doi.org/10.1155/2023/7006565
Kilambi, K. P., & Gray, J. J. (2017). Structure-based cross-docking analysis of antibody-antigen interactions. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-08414-y
Lee, E. S., Kwon, M. H., Kim, H. M., Kim, N., Kim, Y. M., Kim, H. S., Lee, E. Y., & Chung, C. H. (2019). Dibenzoylmethane ameliorates lipid-induced inflammation and oxidative injury in diabetic nephropathy. Journal of Endocrinology, 240(2), 169–179. https://doi.org/10.1530/JOE-18-0206
Lestariningrum, W. T., Kintoko, K., & Farid, M. (2024). Integrated Ethnomedicine Study in Silico of Medicinal Plants for Hypertension. Journal La Lifesci, 5(5), 483–501. https://doi.org/10.37899/journallalifesci.v5i5.1656
Lu, J., Ji, X., Liu, X., Jiang, Y., Li, G., Fang, P., Li, W., Zuo, A., Guo, Z., Yang, S., Ji, Y., & Lu, D. (2024). Machine learning-based radiomics strategy for prediction of acquired EGFR T790M mutation following treatment with EGFR-TKI in NSCLC. Scientific Reports, 14(1). https://doi.org/10.1038/s41598-023-50984-7
Machado, D. I., Silva, E. de O., Ventura, S., & Vattimo, M. de F. F. (2022). The Effect of Curcumin on Renal Ischemia/Reperfusion Injury in Diabetic Rats. Nutrients, 14(14). https://doi.org/10.3390/nu14142798
Majumder, P., Mazumder, S., Chakraborty, M., Chowdhury, S. G., Karmakar, S., & Haldar, P. K. (2017). Preclinical evaluation of Kali Haldi (Curcuma caesia): a promising herb to treat type-2 diabetes. Oriental Pharmacy and Experimental Medicine, 17(2), 161–169. https://doi.org/10.1007/s13596-017-0259-9
Ononamadu, C. J., & Ibrahim, A. (2021). Molecular docking and prediction of ADME/drug-likeness properties of potentially active antidiabetic compounds isolated from aqueous-methanol extracts of Gymnema sylvestre and Combretum micranthum. Biotechnologia, 102(1), 85–99. https://doi.org/10.5114/bta.2021.103765
Paudel, A., Khanal, N., Khanal, A., Rai, S., & Adhikari, R. (2024). Pharmacological insights into Curcuma caesia Roxb., the black turmeric: a review of bioactive compounds and medicinal applications. Discover Plants, 1(1), 69. https://doi.org/10.1007/s44372-024-00076-1
Ramadhan, M. M., Utami, D., & Yuliani, S. (2024). In Silico Study of Purple Yam Anthocyanin Compounds (Dioscorea alata L.) As MAO-B and COMT Inhibitors in Parkinson’s Disease. Journal of Pharmaceutical Science, 20(1). http://journal.uad.ac.id/index.php/Media-Farmasi/indexmediafarmasi@pharm.uad.ac.id
Ramírez, D., & Caballero, J. (2018). Is It Reliable to Take the Molecular Docking Top Scoring Position as the Best Solution without Considering Available Structural Data? Molecules, 23(5). https://doi.org/10.3390/molecules23051038
Shao, H., Xu, X., Mastrangelo, M. A. A., Jing, N., Cook, R. G., Legge, G. B., & Tweardy, D. J. (2004). Structural Requirements for Signal Transducer and Activator of Transcription 3 Binding to Phosphotyrosine Ligands Containing the YXXQ Motif. Journal of Biological Chemistry, 279(18), 18967–18973. https://doi.org/10.1074/jbc.M314037200
Shivanika, C., Deepak Kumar, S., Ragunathan, V., Tiwari, P., Sumitha, A., & Brindha Devi, P. (2022). Molecular docking, validation, dynamics simulations, and pharmacokinetic prediction of natural compounds against the SARS-CoV-2 main-protease. Journal of Biomolecular Structure and Dynamics, 40(2), 585–611. https://doi.org/10.1080/07391102.2020.1815584
Sun, L. N., Yang, Z. Y., Lv, S. S., Liu, X. C., Guan, G. J., & Liu, G. (2014). Curcumin prevents diabetic nephropathy against inflammatory response via reversing caveolin-1 Tyr14phosphorylation influenced TLR4 activation. International Immunopharmacology, 23(1), 236–246. https://doi.org/10.1016/j.intimp.2014.08.023
Syahputra, R., Utami, D., & Widyaningsih, W. (2022). STUDI DOCKING MOLEKULER AKTIVITAS PENGHAMBATAN ENZIM TIROSINASE UBI JALAR (Ipomoea batatas L. Lam). Pharmacon: JurnalFarmasi Indonesia, 19(1). http://pubchem.ncbi.n
Udayani, N. N. W., Putra, I. M. A. S., & Santoso, P. (2024). Effects of Black Turmeric Ethanol Extract (Curcuma Caesia Roxb) on Blood Glucose Levels, SGOT, SGPT, Histopathology Pancreas: A Preliminary Study. South Eastern European Journal of Public Health, XXV. https://doi.org/10.70135/seejph.vi.1831
Varghese, R. T., & Jialal, I. (2023). Diabetic Nephropathy. StatPearls Publishing.
Wang, N., & Zhang, C. (2024). Oxidative Stress: A Culprit in the Progression of Diabetic Kidney Disease. In Antioxidants, 13(4). https://doi.org/10.3390/antiox13040455
Yu, J. T., Fan, S., Li, X. Y., Hou, R., Hu, X. W., Wang, J. N., Shan, R. R., Dong, Z. H., Xie, M. M., Dong, Y. H., Shen, X. Y., Jin, J., Wen, J. G., Liu, M. M., Wang, W., & Meng, X. M. (2023). Novel insights into STAT3 in renal diseases. Biomedicine and Pharmacotherapy, 165. https://doi.org/10.1016/j.biopha.2023.115166
Zhang, X., Liang, D., Guo, L., Liang, W., Jiang, Y., Li, H., Zhao, Y., Lu, S., & Chi, Z. H. (2015). Curcumin protects renal tubular epithelial cells from high glucose-induced epithelial-to-mesenchymal transition through Nrf2-mediated upregulation of heme oxygenase-1. Molecular Medicine Reports, 12(1), 1347–1355. https://doi.org/10.3892/mmr.2015.3556
Zheng, C., Huang, L., Luo, W., Yu, W., Hu, X., Guan, X., Cai, Y., Zou, C., Yin, H., Xu, Z., Liang, G., & Wang, Y. (2019). Inhibition of STAT3 in tubular epithelial cells prevents kidney fibrosis and nephropathy in STZ-induced diabetic mice. Cell Death and Disease, 10(11). https://doi.org/10.1038/s41419-019-2085-0
Zhu, X., Xu, X., Du, C., Su, Y., Yin, L., Tan, X., Liu, H., Wang, Y., Xu, L., & Xu, X. (2022). An examination of the protective effects and molecular mechanisms of curcumin, a polyphenol curcuminoid in diabetic nephropathy. Biomedicine and Pharmacotherapy, 153. https://doi.org/10.1016/j.biopha.2022.113438
Copyright (c) 2025 JURNAL FARMASI DAN ILMU KEFARMASIAN INDONESIA

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
1. The copyright of this journal belongs to the Editorial Board and Journal Manager with the author's knowledge, while the moral right of the publication belong to the author.
2. The formal legal aspect of journal publication accessibility refers to the Creative Commons Attribution-Non-Commercial-Share Alike (CC BY-NC-SA), which implies that the publication can be used for non-commercial purposes in its original form.
3. Every publication (print/electronic) is open access for educational, research, and library purposes. In addition to the objectives mentioned above, the editorial board is not responsible for copyright infringement