Influence of Hesperetin Concentration in Poloxamer P84 and TPGS Mixed Micelles on Physical Characteristics and Cytotoxicity in T47D Cell Line
Downloads
Background: Hesperetin is a natural compound that has several properties including anticancer, but has limitation on low solubility in water. In this case, the development of a hesperetin delivery system using the micellar system is carried out. Objective: The current study aims to determine the effect of drug concentration on the physical characteristics and cytotoxicity of the mixed micelle. Methods: In this study, mixed micelles were formulated with D-a-tocopheryl polyethylene glycol 1000 succinate (TPGS) and poloxamer P84 as polymers through the thin film method, with hesperetin loaded at four different concentrations, i.e., 5 mg (F1), 10 mg (F2), 20 mg (F3), and 40 mg (F4). The mixed micelles were formulated using thin film hydration method. The evaluation of micelle’s physical characteristics was the measurement of particle size, Critical Micelle Concentration (CMC) value, drug loading, and drug entrapment efficiency. The evaluation of cytotoxicity used the T47D cell line and Micro Tetrazolium (MTT) method. Results: The CMC value of the mixed micelle was 0.0029% w/v, which was lower than the CMC of TPGS and poloxamer P84 only. The particle size of the micelles produced was between 17.07–20.37 nm. Among the various formulations, F3 showed relatively small particle size and has homogeneous particle size, high drug loading and encapsulation efficiency, and low IC50. Based on the study, particle size of F3 was 17.93 0.32 nm with polydispersity index (PDI) of 0.2560.034. The drug loading percentage of F3 was 4.0092 0.0048% with an encapsulation efficiency of 94.54920.0013%. Based on cytotoxicity test using MTT method, F3 has low IC50, there was 4.036 ppm. Conclusion: Hesperetin-loaded mixed micelles offer potential as anticancer drugs that improve hesperetin efficacy. The results showed that F3 was the most potent anticancer formulation based on the physical characteristics and cytotoxicity tests.
Adjei, I. M. & Sharma, B. (2014). Nanoparticles : Cellular Uptake and Cytotoxicity. Nanomaterials, Advance in Experimental Medicine and Biology; 811; 73-91. doi: 10.1007/978-94-017-8739-0_5.
Ai, X., Niu, L. Z. H. & He, Z. (2014). Thin-film Hydration Preparation Method and Stability Test of DOX-Loaded Disulfide-Linked Polyethylene Glycol 5000-Lysine-Di-Tocopherol Succinate Nanomicelles. Asian Journal of Pharmaceutical Sciences; 9; 244–250. doi: org/10.1016/j.ajps.2014.06.006.
Arafah, A. B. R. & Notobroto ,H. B. (2017). Faktor Yang Berhubungan Dengan Perilaku Ibu Rumah Tangga Melakukan Pemeriksaan Payudara Sendiri (Sadari). The Indonesian Journal of Public Health; 12; 143-153. doi: org/10.20473/ijph.v12i2.2017.
Arifah, I. F. (2019). Pengaruh Perbandingan D-Α-Tocopheryl Polyethylene Glycol 1000 Succinate dan Poloksamer P84 terhadap Karakteristik Fisik dan Stabilitas Misel Kombinasi (Mixed Micelles). Skripsi; Fakultas Farmasi Universitas Airlangga, Surabaya.
Bodratti, A. M. & Alexandridis, P. (2018). Formulation of Poloxamers for Drug Delivery. Journal of Functional Biomaterials; 9; 1-24. doi: 10.3390/jfb9010011.
Callari, M., Souza, P. L. D., Rawal, A. & Stenzel, M. H. (2017). The Effect of Drug Loading on Micelle Properties: Solid-State NMR as a Tool to Gain Structural Insight. Journal of Angewandte Chemie International Edition; 56; 8441-8445. doi: 10.1002/anie.201701471.
Cancer Chemoprevention Research Center. (2012). Protokol Uji Sitotoksik Metode MTT. Yogyakarta: Fakultas Farmasi Universitas Gajah Mada..
Choi, E. J. (2007). Hesperetin Induced G1-Phase Cell Cycle Arrest in Human Breast Cancer MCF-7 Cells: Involvement of CDK4 and p21. Nutrition and Cancer; 59; 115–119. doi: 10.1080/01635580701419030.
Croy, S. R and Kwon, G. S. (2006) Polymeric Micelles for Drug Delivery. Journal of Currenr Pharmaceutical Design; 12; 4669–4684. doi: 10.2174/138161206779026245.
Damiani, E., Solorio, J. A., Doyle, A. P. & Wallace, H. M. (2009). How Reliable are In Vitro IC50 Values? Values Vary with Cytotoxicity Assays in Human Glioblastoma Cells. Toxicology Letters; 302; 28–34. doi: 10.1016/j.toxlet.2018.12.004.
Danaei, M., Dehghankhold, M., Ataei, S., Davarani, F. H., Javanmard, R., Dokhani, A., Khorasani, S. & Mozafri, M. R. (2018). Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems. Journal of Pharmaceutics; 10; 1–17. doi: 10.3390/pharmaceutics10020057.
Fallah, S. H., Khalilpour, A., Amouei, A., Rezapour, M. & Tabarinia, H. (2020). Stability of Iodine in Iodized Salt Against Heat, Light and Humidity. International Journal of Health and Life Sciences; 6; 1-6. doi: org/10.5812/ijhls.100098
Fares, A. R., Elmeshad, A. N. & Kassem, M. A. (2017). Enhancement of Dissolution and Oral Bioavailability of Lacidipine via Pluronic P123/F127 Mixed Polymeric Micelles : Formulation, Optimization Using Central Composite Design, and In Vivo Bioavailability Study. Journal of Drug Delivery; 25; 132–142. doi: 10.1080/10717544.2017.1419512.
Gao, Y., Li, L. B. & Zhai, G. (2008). Preparation and Characterization of Pluronic / TPGS Mixed Micelles for Solubilization of Camptothecin. Journal of Elsevier; 64; 194–199. doi: 10.1016/j.colsurfb.2008.01.021.
Kumbhar, P. S., Patil, N. J., Patil, A. B., Sambamoorthy, U., Disouza, J. I. & Manjappa, A. S. (2017). Simvastatin Loaded Nano Mixed Micelles: An Approach to Treat Hormone Dependent Carcinomas. International Journal of Pharmaceutical Sciences and Research; 12; 546-554. doi: 10.13040/IJPSR.0975-8232.10(2).
Liu, J., Lee. H. & Allen, C. (2006). Formulation of Drugs in Block Copolymer Micelles: Drug Loading and Release. Current Pharmaceutical Design; 12; 4685-4701. doi: 10.2174/138161206779026263.
Liu, X., Jiang, H. & Shen, Y. (2019). Enhanced Water Solubility, Antioxidant Activity, and Oral Absorption of Hesperetin by D-α-Tocopheryl Polyethylene Glycol 1000. Journal of Zhejiang Universitt-SCIENCE B(Biomedicine & Biotechnology); 20; 273–281. doi: 10.1631/jzus.B1800346.
Lombardo, D., Kiselev, M. A., Magazu, S. & Calandra, P. (2015). Amphiphiles Self-Assembly : Basic Concepts and Future Perspectives of Amphiphiles Self-Assembly : Basic Concepts and Future Perspectives of Supramolecular Approaches. Journal of Cindensed Matter Physics; 2015; 1-21. doi: org/10.1155/2015/151683
Lu, Y., Zhang, E., Yang, J. & Cao, Z. (2019) Strategies to Improve Micelle Stability for Drug Delivery. HHS Public Access; 11; 4985–4998. doi: 10.1007/s12274-018-2152-3
Mandal, A., Bisht, R., Rupenthal, I. D. & Mitra, A. K. (2017). Polymeric Micelles for Ocular Drug Delivery: From Structural Frameworks to Recent Preclinical Studies. Journal of Controlled Release; 248; 96–116. doi: org/10.1016/j.jconrel.2017.01.012
Nga, N. T. H., Ngoc, T. T. B., Trinh, N. T. M., Thuoc, T. L. & Thao, D. T. P. (2020). Optimization and Application of MTT Assay in Determining Density of Suspension Cells. Journal of Analytical Biochemistry; September 610; 1-11. doi: org/10.1016/j.ab.2020.113937.
Raveendran, R., Bhuvaneshwar, G. S. & Sharma, C. P. (2012). In Vitro Cytotoxicity and Cellular Uptake of Curcumin-Loaded Pluronic/Polycaprolactone Micelles in Colorectal Adenocarcinoma Cells. Journal of Biomaterials Applications; 2; 811–827. doi: 10.1177/0885328211427473.
Saxena, V. & Hussain, M. D. (2012). Poloxamer 407/TPGS Mixed micelles for Delivery of Gambogic Acid to Breast and Multidrug-Resistant Cancer. International Journal of Nanomedicine; 7; 713–721. doi: 10.2147/IJN.S28745.
Saxena, V. & Hussain, M. D. (2013). Polymeric Mixed Micelles for Delivery of Curcumin to Multidrug Resistant Ovarian Cancer. Journal of Biomedical Nanotechnology; 9; 1146–1154. doi: 10.1166/jbn.2013.1632.
Setiawan, D. (2015). The Effect of Chemotherapy in Cancer Patient To Anxiety. Jurnal Majority; 4; 94–99.
Shete, G., Pawar, Y. B., Thanki, K., Jain, S. & Bansal, A. K. (2015). Oral Bioavailability and Pharmacodynamic Activity of Hesperetin Nanocrystals Generated Using a Novel Bottom-Up Technology. Journal of Molecular Pharmaceutics; 12(4); 1158–1170. doi: 10.1021/mp5008647.
Stanisic, D., Costa, A. F., Fåvaro, W. J., Tasic, L., Seabra, A. B. & Duran, N. (2018). Anticancer Activities of Hesperidin and Hesperetin In vivo and their Potentiality against Bladder Cancer. Journal of Nanomedicine & Nanotechnology; 9; 4-6. doi: 10.4172/2157-7439.1000515.
Zarrintaj, P., Ramsey, J. D., Samadi, A., Atoufi, Z., Yazdi, M. K., Ganjali, M. R., Amirabad, L. M., Zangene, E., Farokhi, M., Formela, K., Saeb, M. R., Mozafari, M. & Thomas, S. (2020). Poloxamer: A Versatile Tri-Block Copolymer for Biomedical Applications. Journal of Acta Biomaterialia; 110; 37–67. doi: 10.1016/j.actbio.2020.04.028.
Zhang, J., Li Y., Zhou, D., Wang, Y. & Chen, M. (2014). TPGS-G-PLGA/Pluronic F68 Mixed Micelles for Tanshinone IIA Delivery In Cancer Therapy. International Journal of Pharmaceutics; 476; 185–198. doi: 10.1016/j.ijpharm.2014.09.017.
Zhang, Z., Tan, S. and Feng, S. (2012). Vitamin E TPGS as a Molecular Biomaterial for Drug Delivery. Journal of Biomaterials; 33; 4889–4906. doi: 10.1016/j.biomaterials.2012.03.046.
Zhou, W., Li C., Wang, Z., Zhang, W. & Liu, J. (2016). Factors Affecting The Stability of Drug-Loaded Polymeric Micelles and Strategies for Improvement. Journal of Nanoparticle Research; 18; 1-18. doi: 10.1007/s11051-016-3583-y.
Copyright (c) 2025 JURNAL FARMASI DAN ILMU KEFARMASIAN INDONESIA

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
1. The copyright of this journal belongs to the Editorial Board and Journal Manager with the author's knowledge, while the moral right of the publication belong to the author.
2. The formal legal aspect of journal publication accessibility refers to the Creative Commons Attribution-Non-Commercial-Share Alike (CC BY-NC-SA), which implies that the publication can be used for non-commercial purposes in its original form.
3. Every publication (print/electronic) is open access for educational, research, and library purposes. In addition to the objectives mentioned above, the editorial board is not responsible for copyright infringement