Prediction Model of Dengue Hemorrhagic Fever Incidence Using Climatic Factors in Kabupaten Gorontalo
Downloads
All countries of ASEAN member agree that dengue fever is one of the major problems faced by all ASEAN countries so the status of their territory has been determined to be hyperendemic in the last 10 years. Global warming is predicted to result in an increase in the average temperature of the earth's surface by 2,0OC to 4,5OC in 2100, which will have a direct impact on diseases caused by vectors. This study aims to examine the relationship of climate factors to the incidence of dengue fever and find a predictive model of dengue fever in Gorontalo regency. This research data used secondary data from 2012-2016, which included climate data (average temperature, irradiation time, rainfall, rainy days, and average wind speed) per month obtained from the Meteorology and Geophysics Agency (MGA) Gorontalo Class II and dengue fever incidence data were monthly incident data obtained from the Health Office Gorontalo regency. Based on the values of determinant values (R2) of the five models that were obtained, the value is 13,4% with p value = 0,004 and the linear regression equation using the backward method. Thus, estimated number of cases of dengue fever in Gorontalo Regency in a year reached 132 cases. Besides climate factors, the increasing number of cases of dengue fever might be caused by urbanization, population density, high population mobilization, community behavior, existence and quality of facilities and health services obtained by the community. Improvisation is needed for planning prevention programs and its implementation. As well as designing spatial-based disease prevention and control program that analyzes all climate, demographic and environmental parameters that are the causes of the high incidence of dengue fever.
Bhatia, R., Dash, A. P., & Sunyoto, T. (2013). Changing epidemiology of dengue in. WHO South-East Asia Journal of Public Health, 2(1), 23–27. https://doi.org/10.4103/2224-3151.115830
BMKG. (2016). Data Iklim 2012-2016. Badan Meteorologi Klimatologi dan Geofisika. Gorontalo.
Boekoesoe, L. (2015). Ancaman Demam Berdarah Dengue Analisa Temuan Kasus Di Kota Gorontalo. (W. Yunus, Ed.). Makassar: Samudera Himalaya.
BPS. (2016). Kabupaten Gorontalo Dalam Angka. Gorontalo: Badan Pusat Statistik.
Chandren, J. R., Wong, L. P., & Abubakar, S. (2015). Practices of Dengue Fever Prevention and the Associated Factors among the Orang Asli in Peninsular Malaysia. Plos Neglected Tropical Disease, 9(8), 1–17. https://doi.org/10.1371/journal.pntd.0003954
Choi, Y., Tang, C. S., Mclver, L., Hashizume, M., Chan, V., Abeyasinghe, R. R., ... Huy, R. (2016). Effects of weather factors on dengue fever incidence and implications for interventions in Cambodia. BMC Public Health, 16(241), 1–7. https://doi.org/10.1186/s12889-016-2923-2
Djafri, D. (2015). Pemodelan Epidemiologi Penyakit Menular. Jurnal Kesehatan Masyarakat Andalas, 10(1), 1–2.
Jahja, Sugito, B. H., & Mamik. (2016). The Relation Between Rainfall With Prevalence Of Dengue Hemorrhagic Fever ( DHF ) In Children Ages 5-14 Years. International Journal of Scientific & Technology Research, 5(11), 54–57. Retrieved from https://www.ingentaconnect.com/content/doaj/22778616/2015/00000004/00000008/art00216
Kemenkes. (2016). Situasi DBD di Indonesia. Pusat Data dan Informasi Kementerian Kesehatan Republik Indonesia. Jakarta: Pusat Data dan Informasi Kementerian Kesehatan Republik Indonesia.
Lim, L. H., Vasan, S. S., Birgelenc, L., Murtola, T. M., Gong, H.-F., & Field, R. W. (2010). Immediate cost of dengue to Malaysia and Thailand : An estimate. Dengue Bulletin, 34, 65–76.
Morin, C. W., Comrie, A. C., & Ernst, K. (2013). Climate and Dengue Transmission : Evidence and Implications. Environmental Health Perspectives, 121(11–12), 1264–1272. https://doi.org/http://dx.doi.org/10.1289/ehp.1306556
Prasetyowati, I. (2015). Kepadatan Penduduk dan Insiden Rate Demam Berdarah Dengue (DBD) Kabupaten Bondowoso, Jawa Timur. The Indonesian Journal of Health Science, 5(2), 7–18. Retrieved from http://digilib.unmuhjember.ac.id/gdl.php?mod=browse&op=read&id=umj-1x-irmapraset-2669
Rasmanto, M. F., Sakka, A., & Ainurafiq. (2016). Model Prediksi Kejadian Demam Berdarah Dengue (DBD) Berdasarkan Unsur Iklim di Kota Kendari Tahun 2005-2015. Ilmiah Mahasiswa Kesehatan Masyarakat, 1(3), 1–14. Retrieved from http://ojs.uho.ac.id/index.php/JIMKESMAS/article/view/1229
Sunarno, R. P., Wahyuningsih, N. E., & Budiharjo, A. (2017). Studi Faktor Suhu di dalam Rumah dan Kejadian Demam Berdarah Dengue Di Semarang Tahun 2017. Jurnal Kesehatan Masyarakat (e-Journal), 5(5), 807–814. Retrieved from http://ejournal3.undip.ac.id/index.php/jkm
Sungkar, S. (2011). Trend of Dengue Hemorrhagic Fever in North Jakarta. Journal of the Indonesian Medical Association : Majalah Kedokteran Indonesia, 61(10), 395–399.
WHO. (2011). Comprehensive Guidelines for Prevention and Control of Dengue and Dengue Haemorrhagic Fever (Revised and Expanded Edition). New Delhi: World Health Organization, Regional Office for South-East Asia.
2. Formal legal provisions to access digital articles of electronic journal are subject to the provision of the Creative Commons Attribution-ShareAlike license (CC BY-NC-SA), which means that Jurnal Kesehatan Lingkungan is rightful to keep, transfer media/format, manage in the form of databases, maintain, and publish articles.
3. Published manuscripts both printed and electronic are open access for educational, research, and library purposes. Additionally, the editorial board is not responsible for any violations of copyright law.
JKESLING by UNAIR is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.