The Natural Radionuclide Activity and the Risk of Potential Radiation in Health Effect: A Study on Beach Sand in Madura, Bali, and Lombok
Downloads
Introduction: Beach sand is one of the widely used aggregates in construction, especially in coastal areas. However, beach sand contains a hidden risk, namely radioactive hazards. This research will analyze the radioactive activity of nuclides 226Ra, 232Th, and 40K on beach sand and calculate the health risk potential in radiation exposure to the household. Methods: Beach sands sampling was carried out on Madura Island, Bali, and Lombok in 2016. All samples were ovensifted and then put into Marinelli to be chopped using high-purity germanium (HPGe) gamma-ray detectors for three days. Results and Discussion: The average of 226Ra, 232Th, and 40K radionuclide activity on the beach sand in Madura were respectively 31.46 Bq/kg, 40.12 Bq/kg, and 334.04 Bq/ kg; in Bali were 25.10 Bq/kg, 7.71 Bq/kg, and 165.15. Bq/kg; and in Lombok the amount is 25.88 Bq/kg, 8.25 Bq/kg and 171.99 Bq/kg. The calculation of the radium equivalent (Raeq) value on beach sand in Madura, Bali, and Lombok has the highest value of 132.72 Bq/kg, 54.06 Bq/kg, and 55.92 Bq/kg. The gamma index (I) in Madura, Bali, and Lombok was 1.02; 0.39; and 0.40. For the calculation of Hex and Hin in Madura, Bali, and Lombok, the highest were 0.38; 0.15; 0.15; and 0.48; 0.23; 0.24. Conclusion: The activity of the three types of natural radionuclides from the three regions is still below the threshold value. Analysis of potential health risks showed in the gamma index value (I) indicator, which exceeds the safe threshold in the Madura beach sand sample.
Chandrasekaran S, Sankaran PG, Venkatraman B. Assessment of Heavy Metals and Radionuclides (238U, 232Th and 40K) Concentration of Beach Sands Collected from East Coast of Tamilnadu, India With Multivariate Statistical Approach. International Journal of Environmental Analytical Chemistry.
;1(1):1–23. https://doi.org/10.1080/03067319.2020.1779240
Siswanto R, Suyoso H, Hayu GA. Pengaruh Penggunaan Pasir Pantai Sebagai Agregat Halus dan Cangkang Kerang sebagai Subtitusi Parsial Semen terhadap Kuat Tekan Beton. Jurnal
Rekayasa Sipil dan Lingkungan. 2017;1(2):192-199. http://doi.org/10.19184/jrsl.v1i02.6895
Hadi S. Variasi Mortar Pasir Pantai dan Tanah Lempung Dengan Mortar Pasir Sungai Terhadap Kuat Tekan. Media Bina Ilmiah. 2018;12(7):109-116. http://ejurnal.binawakya.or.id/index.php/MBI/article/view/27
Grupen C. Introduction to Radiation Protection. Springer: Siegen; 2010. https://link.springer.com/book/10.1007/978-3-642-02586-0
Shuaibu HK, Khandaker MU, Alrefae T, Bradley DA. Assessment of Natural Radioactivity and Gammaray Dose in Monazite Rich Black Sand Beach of Penang Island, Malaysia. Marine Pollution Bulletin. 2017;119(1):423–428. http://doi.org/10.1016/j.marpolbul.2017.03.026
Amana MS. Radiation Hazard Index of Common Imported Ceramic Using for Building Materials in Iraq. Australian Journal of Basic and Applied Sciences. 2017;11(10):94–102. http://www.
ajbasweb.com/old/ajbas/2017/July/94-102.pdf
Joel ES, De DK, Omeje M, Adewoyin O, Olawole OC, Akinwumi A, et al. Assessment of Background Radionuclides and Gamma Dose Rate Distribution in Urban-Setting and Its Radiological Significance. Scientific African. 2020;8(e00377):1-8. http://doi.org/10.1016/j.sciaf.2020.e00377
Ghias S, Satti KH, Khan M, Dilband M, Naseem A, Jabbar A, et al. Health Risk Assessment of Radioactive Footprints of The Urban Soils in The Residents of Dera Ghazi Khan, Pakistan. Chemosphere. 2021;267(129171):1-10. https://doi.org/10.1016/j.chemosphere.2020.129171
Guembou Shouop CJ, Ndontchueng Moyo M, Chene G, Nguelem Mekontso EJ, Motapon O, Kayo SA, et al. Assessment of Natural
Radioactivity and Associated Radiation Hazards in Sand Building Material Used in Douala Littoral Region of Cameroon, Using Gamma Spectrometry. Environmental Earth Sciences. 2017;76(164):1-12. https://doi.org/10.1007/s12665-017-6474-3
Malain D, Regan PHH, Bradley DAA, Matthews M, Al-sulaiti HAA, Santawamaitre T. An Evaluation of The Natural Radioactivity in Andaman Beach Sand Samples of Thailand After The 2004
Tsunami. Applied Radiation and Isotopes. 2012;70(8):1467–1474. http://doi.org/10.1016/j.apradiso.2012.04.017
Arnedo MA, Tejera A, Rubiano JG, Alonso H, Gil JM, Rodriguez R, et al. Natural Radioactivity Measurements of Beach Sands in Gran Canaria, Canary Islands (Spain). Radiation Protection
Dosimetry. 2013;156(1):75–86. http://doi.org/10.1093/rpd/nct044
Punniyakotti J, Ponnusamy V. Radionuclides of 238U , 232Th and 40K in Beach Sand of Southern Regions in Tamilnadu State , India ( Post-Tsunami ). Indian Journal of Pure & Applied Physics.
Arriola-Velásquez A, Tejera A, Guerra JG, Alonso I, Alonso H, Arnedo MA, et al. Spatio-Temporal Variability of Natural Radioactivity as Tracer of Beach Sedimentary Dynamics. Estuarine, Coastal and Shelf Science. 2019;231(106476):1-10. https://doi.org/10.1016/j.ecss.2019.106476
Fares S. Measurements of Natural Radioactivity Level in Black Sand and Sediment Samples of The Temsah Lake Beach in Suez Canal Region in Egypt. Journal of Radiation Research and Applied Sciences. 2017;10(3):194–203. http://doi.org/10.1016/j.jrras.2017.04.007
Lyngkhoi B, Nongkynrih P. Radioactivity in Building Materials and Assessment of Risk of Human Exposure in The East Khasi Hills District, Meghalaya, India. Egyptian Journal of Basic and Applied Sciences. 2020;7(1):194–209. https://doi.org/10.1080/2314808X.2020.1781747
Madruga MJ, Miró C, Reis M, Silva L. Radiation Exposure From Natural Radionuclides in Building Materials. Radiation Protection Dosimetry. 2019;185(1):49–57. https://doi.org/10.1093/rpd/ncy256
Maxwell O, Emmanuel JS, Olusegun AO, Cyril E-EO, Ifeanyi AT, Embong Z. A Study of Natural Radioactivity in Some Building Materials in Nigeria. Radiation Protection Dosimetry. 2019;183(3):332–335. https://doi.org/10.1093/rpd/ncy121
Asaduzzaman K, Mannan F, Khandaker MU, Farook MS, Elkezza A, Amin YBM, et al. Assessment of Natural Radioactivity Levels and Potential Radiological Risks of Common Building Materials Used in Bangladeshi Dwellings. PLOS One. 2015;10(e0140667):1-16. https://doi.org/10.1371/journal.pone.0140667
Agency for Toxic Substances and Disease Registry. Toxicological Profile for Thorium. ATSDR's Toxicological Profiles. United States: U.S. Department of Health and Human Services; 2019.
https://www.atsdr.cdc.gov/ToxProfiles/tp147.pdf
Priasetyono Y, Makmur M, Yahya MN, Putra DIP, Prihatiningsih WR, Suseno H. Updating of Baseline Radionuclides Concentration in Jakarta Bay. IOP Conference Series: Earth and Environmental
Science. 2020;584(012067):1-6. https://doi.org/10.1088/1755-1315/584/1/012067
Marwoto J, Muslim M, Aprilia ZD, Purwanto P, Makmur M. Sebaran Aktivitas Radionuklida Alam dalam Sedimen di Perairan Sluke Rembang, Jawa Tengah. Jurnal Kelautan Tropis. 2019;22(2):141-146. https://doi.org/10.14710/jkt.v22i2.4881
Khandaker MU, Asaduzzaman K, Sulaiman AF Bin, Bradley DA, Isinkaye MO. Elevated Concentrations of Naturally Occurring Radionuclides in Heavy Mineral-Rich Beach Sands of Langkawi
Island, Malaysia. Marine Pollution Bulletin. 2018;127(1):654–663. https://doi.org/10.1016/j.marpolbul.2017.12.055
Ahmad AY, Al-Ghouti MA, AlSadig I, Abu-Dieyeh M. Vertical Distribution and Radiological Risk Assessment of 137Cs and Natural Radionuclides in Soil Samples. Scientific Reports. 2019;9(1):1–14.
http://doi.org/10.1038/s41598-019-48500-x
Elnobi S, Harb S, Ahmed NK. Influence of Grain Size on Radionuclide Activity Concentrations and Radiological Hazard of Building Material Samples. Applied Radiation and Isotopes. 2017;130(1):43–48. http://doi.org/10.1016/j.apradiso.2017.09.021
Nuclear Energy Agency-Organisation for Economic Co-operation and Development. Exposure to Radiation From The Natural Radioactivity in Building Materials. Paris: Nuclear Energy AgencyOrganisation for Economic Co-operation and Development; 1979. https://www.oecd-nea.org/rp/
reports/1979/exposure-to-radiation-1979.pdf
Ravisankar R, Chandramohan J, Chandrasekaran A, Jebakumar JP, Vijayalakshmi I, Vijayagopal P, et al. Assessments of Radioactivity Concentration of Natural Radionuclides and Radiological Hazard Indices in Sediment Samples from the East Coast of Tamilnadu, India With Statistical Approach. Marine
Pollution Bulletin. 2015;97(1–2):419–430. https://doi.org/10.1016/j.marpolbul.2015.05.058
Ribeiro FCA, Lauria D da C, Silva JIR, Lima ESA, Sobrinho NMB do, Pérez DV. Baseline and Quality Reference Values for Natural Radionuclides in Soils of Rio de Janeiro State, Brazil. Revista Brasileira de Ciíªncia do Solo. 2018;42(1):1–15. https://doi.org/10.1590/18069657rbcs20170146
Urso L, Hormann V, Diener A, Achatz M. Modelling Partition Coefficients of Radium in Soils. Applied Geochemistry. 2019;105(1):78–86. https://doi.org/10.1016/j.apgeochem.2019.04.014
Shi C, Chen L, Wang Y, Chai L, Qiu G. Natural Radioactivity Evaluation of Local Soil used as Building Materials in Xinchang Section of Beishan Pre-selected Area, Northwest China. IOP Conference Series: Earth and Environmental Science. 2021;728(012007):1-11. https://doi.org/10.1088/1755-1315/728/1/012007
United Nations Scientific Committee on the Effects of Atomic Radiation. Sources and Effects of Ionizing Radiation. New York: United Nations Publication; 2000. https://doi.org/10.1088/0952-4746/21/1/609
Ugbede FO. Distribution of 40K, 238U and 232Th and Associated Radiological Risks in River Sand Sediments Across Enugu East, Nigeria. Environmental Nanotechnology, Monitoring &
Management. 2020;14(100317):1-10. https://doi.org/10.1016/j.enmm.2020.100317
Kovler K, Friedmann H, Michalik B, Schroeyers W, Tsapalov A, Antropov S, et al. Basic Aspects of Natural Radioactivity. Cambridge: Naturally Occurring Radioactive Materials in Construction; 2017. p. 13–36. https://doi.org/10.1016/B978-0-08-
-8.00003-7
Liu X, Lin W. Natural Radioactivity in the Beach Sand and Soil Along the Coastline of Guangxi Province, China. Marine Pollution Bulletin. 2018;135(1):446–450. https://doi.org/10.1016/j.marpolbul.2018.07.057
Soniya SR, Monica S, Prasad VA, Jojo PJ. Assessment of Radiological Consequence of Radioactivity in Monazite Beach Sand in South West Coastal Region in Southern India. Materials Today Proceedings. 2019;16(2):784–791. https://doi.org/10.1016/j.matpr.2019.05.159
Makmur M, Prihatiningsih WR, Yahya MN. Penilaian Dampak Bahaya Radiologis terhadap Radionuklida Natural di Pesisir Pulau Bengkalis. Jurnal Kesehatan Lingkungan Indonesia. 2019;18(2):113-120. https://doi.org/10.14710/jkli.18.2.113-120
Prihatiningsih WR, Suseno H, Makmur M, Yahya MN, Muslim M, Yahya MN. Effect of Regional Oceanographic Processes to The Distribution of Radionuclides in The Coasts of Kalimantan. IOP
Conference Series: Earth and Environmental Science. 2020;429(012014):1-9. https://doi.org/10.1088/1755-1315/429/1/012014
Kucukomeroglu B, Karadeniz A, Damla N, Yesilkanat CM, Cevik U. Radiological Maps in Beach Sands Along Some Coastal Regions of Turkey. Marine Pollution Bulletin. 2016;112(1–2):255–264. http://dx.doi.org/10.1016/j.marpolbul.2016.08.007
2. Formal legal provisions to access digital articles of electronic journal are subject to the provision of the Creative Commons Attribution-ShareAlike license (CC BY-NC-SA), which means that Jurnal Kesehatan Lingkungan is rightful to keep, transfer media/format, manage in the form of databases, maintain, and publish articles.
3. Published manuscripts both printed and electronic are open access for educational, research, and library purposes. Additionally, the editorial board is not responsible for any violations of copyright law.
JKESLING by UNAIR is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.