Utilization of Lignocellulosic Waste as a Source of Liquid Smoke: A Literature Review, Lampung, Indonesia
Introduction: Lignocellulosic biomass waste will become a problem for environmental health if not managed correctly. Biomass waste decomposition can produce methane gas which impacts climate change; it can also be a source of breeding pests and diseases. Various efforts have been made to utilize the waste so that it has an added economic value and is environmentally friendly. One of the waste utilization techniques is the carbonization of lignocellulosic biomass into charcoal and liquid smoke. Discussion: A literature review used the articles from Science Direct, Pubmed, Google Scholar, and Research Gate databases over ten years. This literature review paper aims to provide information on producing and utilizing liquid smoke and concludes with some suggestions on production and application. The literature review results show evidence that liquid smoke has been used since the time of the Neanderthals. Then, since the early nineteen century, liquid smoke has been applied in agriculture as plant growth, soil treatment, pesticide, antimicrobial, rubber coagulant/deodorizer, and antioxidant. Conclusion: A significant contribution of liquid smoke utilization is all lignocellulosic biomass waste that can be carbonized into charcoal and liquid smoke so that it can reduce waste problems. Therefore, liquid smoke can reduce the use of pesticides, herbicides, and insect repellents made from synthetic chemicals that can poison the environment. Not much research has been produced and utilized liquid smoke in the pyrolysis temperature stratification technique. So, there are still quite a lot of research opportunities for the diversification of liquid smoke production.
Das PK, Das BP, Dash P. 13-Potentials of Postharvest Rice Crop Residues as a Source of Biofuel. In: Refining Biomass Residues for Sustainable Energy and Bioproducts: Technology, Advances, Life Cycle Assessment, and Economics. London: Elsevier Inc.; 2020. p. 275–302.
https://www.sciencedirect.com/science/article/abs/pii/B9780128189962000132
Yousuf A, Pirozzi D, Sannino F. Chapter 1 - Fundamentals of Lignocellulosic Biomass [Internet]. Lignocellulosic Biomass to Liquid Biofuels. London: Academic Press; 2020. 1–15 .https://www.sciencedirect.com/science/article/abs/pii/B9780128159361000010
Fariza N, Hassan NA, Farhan M, Edre MA, Rus RM. Solid waste : Its Implication for Health and Risk of Vector Borne Diseases. Journal of Wastes and Biomass Management. 2019;1(2):14–17. http://doi.org/10.26480/jwbm.02.2019.14.17
Israt A. Analysis of air Pollution Levels Due to Methane (Ch4) Emissions at Final Disposal Site. J Asian Multicult Res Med Heal Sci Study. 2022;3(3):10–15. https://doi.org/10.47616/jamrmhss.v3i3.303
Osman AI, Mehta N, Elgarahy AM, Al A, Ala H, Al H, et al. Conversion of Biomass to Biofuels and Life Cycle Assessment : A Review. Environmental Chemistry Letters. Springer International Publishing; 2021,19: 4075–4118 p. https://doi.org/10.1007/s10311-021-01273-0
Yan K. Editorial : Biomass Resources Utilization. Front Chem. 2022;10(1):10–12. https://doi.org/10.3389/fchem.2022.948565
Zoghlami A, Paí«s G. Lignocellulosic Biomass: Understanding Recalcitrance and Predicting Hydrolysis. Front Chem. 2019;7(1):2–14. https://doi.org/10.3389/fchem.2019.00874
Xiong Z, Wang Y, Syed-Hassan SSA, Hu X, Han H, Su S, et al. Effects of Heating Rate on the Convers Manag. 2018;163(1):420–427. https://doi.org/10.1016/j.enconman.2018.02.078
Theapparat Y, Chandumpai A, Faroongsarng D. Physicochemistry and Utilization of Wood Vinegar from Carbonization of Tropical Biomass Waste. In: Tropical Forests - New Edition. London: IntechOpen; 2018. http://dx.doi.org/10.5772/intechopen.77380
Itoh T, Iwabuchi K, Ota K. A New Approach to Stabilize Waste Biomass for Valorization using an Oxidative Process at 90 ËšC. PLoS One. 2018;13(4):1–11. https://doi.org/ 10.1371/journal.pone.0196249
Sangsuk S, Suebsiri S, Puakhom P. The Metal Kiln With Heat Distribution Pipes for High Quality Charcoal and Wood Vinegar Production. Energy Sustain Dev. 2018;47:149–157.https://doi.org/10.1016/j.esd.2018.10.002
Almeida RSR, Taccini MM, Moura LF de, Ceribelli UL, Brito JO. Chemical Composition and Purification of Pyroligneous Liquor from Eucalyptus Wood. Mod Concepts Dev Agron. 2018;1(4):68–72. https://doi.org/10.31031/MCDA.2018.01.000518
Kozowyk PRB, Poulis JA, Langejans GHJ. Laboratory Strength Testing of Pine Wood and Birch Bark Adhesives : A First Study of the Material Properties of Pitch. J Archaeol Sci Reports. 2017;13(1):49–59. https://doi.org/10.1016/j.jasrep.2017.03.006
Hennius A. Viking Age Tar Production and Outland Exploitation. Antiquity Publications. 2018;365(1):1349–1361. https://doi.org/10.15184/aqy.2018.22
Stacey RJ, Dunne J, Brunning S, Devièse T, Mortimer R, Ladd S, et al. Birch Bark Tar in Early Medieval England – Continuity of Tradition or Technological Revival?. J Archaeol Sci Reports. 2020;29(102118):1-13. https://doi.org/10.1016/j.jasrep.2019.102118
Markovi´c N, Biki´c V, Temerinski Z, Vuˇceti´c S, Ranogajec J. Mummified Animal Skin with Tar Content from the Castle of the Late Medieval Town of Novo Brdo (Central Balkans). J Archaeol Sci Reports. 2021;40(1):1–9. https://doi.org/ 10.1016/j.jasrep.2021.103227
Wang Y, Qiu L, Song Q, Wang S, Wang Y, Ge Y. Root Proteomics Reveals the Effects of Wood Vinegar on Wheat Growth and Subsequent Tolerance to Drought Stress. Int J Mol Sci. 2019;20(4):1–23. https://doi.org/ 10.3390/ijms20040943
Mahdie MF, Violet V, Helmi M. Rendement and Characteristics of Wood Vinegar Produced from Ironwood Delinquent Waste Through Clay Kiln Charcoaling Furnace. J Wetl Environ Manag. 2020;8(2):140-148. http://dx.doi.org/10.20527/jwem.v8i2.231
Pimenta AS, Monteiro TVC, Lima KMG. Chemical Composition of Pyroligneous Acid Obtained from Eucalyptus GG100 Clone. Molecules. 2018;23(426):1–12. https://doi.org/10.3390/molecules23020426
Faisal M, Gani A. The Effectiveness of Liquid Smoke Produced from Palm Kernel Shells Pyrolysis as a Natural Preservative. Int J GEOMATE. 2018;15(47):145–150. https://doi.org/10.21660/2018.47.06109 ISSN:
Desvita H, Faisal M. Edible Coating for Beef Preservation from Chitosan Combined with Liquid Smoke. Int J Technol. 2020;11(4):817–829. https://doi.org/ 0.14716/ijtech.v11i4.4039
Díez D, Urueña A, Piñero R, Barrio A, Tamminen T. Determination of Hemicellulose, Cellulose, and Lignin Content in Different Types of Biomasses by Thermogravimetric Analysis and Pseudocomponent Kinetic Model (TGA-PKM Method). Processes. 2020;8(1048):1–21. https://doi.org/ 10.3390/pr8091048
Oyebode WA, Ogunsuyi HO. Impact of Torrefaction Process Temperature on the Energy Content and Chemical Composition of Stool Tree (Alstonia congenisis Engl) Woody Biomass. Curr Res Green Sustain Chem. 2021;4. https://doi.org/10.1016/j.crgsc.2021.100115
Batista RR, Gomes MM. Effects of Chemical Composition and Pyrolysis Process Variables On Biochar Yields : Correlation and Principal Component Analysis. Floresta e Ambient 2021; 2021;28(3):1–12. https://doi.org/10.1590/2179-8087-FLORAM-2021-0007
Rowell RM. Understanding Wood Surface Chemistry and Approaches to Modification: A Review. Polymers. 2021;13(15):2558. https://doi.org/10.3390/polym13152558
Baig KS. Interaction of Enzymes with Lignocellulosic Materials: Causes, Mechanism and Influencing Factors. Bioresour Bioprocess. 2020;7(21):1-19. https://doi.org/10.1186/s40643-020-00310-0
Hu L, Fang X, Du M, Luo F, Guo S. Hemicellulose-based Polymers Processing and Application. Am J Plant Sci. 2020;11(12):2066–2079. https://doi.org/10.4236/ajps.2020.1112146
Wang J, Minami E, Kawamoto H. Thermal Reactivity of Hemicellulose and Cellulose in Cedar and Beech Wood Cell Walls. J Wood Sci. 2020;66(41):1-10. https://doi.org/10.1186/s10086-020-01888-x
Kubovskí½ I, KaÄíková D, KaÄík F. Structural Changes of Oak Wood Main Components Caused by Thermal Modification. Polymers. 2020;12(2):485. https://doi.org/10.3390/polym12020485
Xu Y, Wang P, Xue S, Kong F, Ren H, Zhai H. Green Biorefinery ” The Ultra-High Hydrolysis Rate and Behavior of Populus Tomentosa Hemicellulose Autohydrolysis Under Moderate Subcritical Water Conditions. RSC Advances. 2020;10(32):18908–18917. https://doi.org/10.1039/d0ra02350g
O'Neill MA, Black I, Urbanowicz B, Bharadwaj V, Crowley M, Koj S, et al. Locating Methyl-Etherified and Methyl-Esterified Uronic Acids in the Plant Cell Wall Pectic Polysaccharide Rhamnogalacturonan II. SLAS Technol. 2020;25(4):329–344. https://doi.org/10.1177/2472630320923321
Gadhave R V., Srivastava S, Mahanwar PA, Gadekar PT. Lignin: Renewable Raw Material for Adhesive. Open J Polym Chem. 2019;09(02):27–38. https://doi.org/10.4236/ojpchem.2019.92003
Ma M, Dai L, Xu J, Liu Z, Ni Y. A Simple and Effective Approach to Fabricate Lignin Nanoparticles with Tunable Sizes Based on Lignin Fractionation. Green Chem. 2020;22(6):2011–2017. https://doi.org/10.1039/D0GC00377H
Bartoli M, Rosi L, Giovannelli A, Frediani P, Frediani M. Characterization of Bio-Oil and Bio-Char Produced by Low-Temperature Microwave-Assisted Pyrolysis of Olive Pruning Residue Using Various Absorbers. Waste Manag Res. 2020;38(2):213–225. https://doi.org/10.1177/0734242X19865342
Park JY, Kim JK, Oh CH, Park JW, Kwon EE. Production of Bio-oil from Fast Pyrolysis of Biomass Using a Pilot-Scale Circulating Fluidized Bed Reactor and Its Characterization. J Environ Manage. 2019;234(1):138–144. https://doi.org/10.1016/j.jenvman.2018.12.104
Omar S, Alsamaq S, Yang Y, Wang J. Production of Renewable Fuels by Blending Bio-Oil with Alcohols and Upgrading Under Supercritical Conditions. Front Chem Sci Eng. 2019;13(4):702–717. https://doi.org/10.1007/s11705-019-1861-9
Maneechakr P, Karnjanakom S. Improving the Bio-Oil Quality Via Effective Pyrolysis/Deoxygenation of Palm Kernel Cake Over a Metal (Cu, Ni, or Fe)-doped Carbon Catalyst. ACS Omega. 2021;6(30):20006–20014. https://doi.org/10.1021/acsomega.1c02999
Deforce K, Groenewoudt B, Haneca K. 2500 Years of Charcoal Production in the Low Countries: The Chronology and Typology of Charcoal Kilns and Their Relation with Early Iron Production. Quaternary International. 2021;593–594(1):295–305.https://doi.org/10.1016/j.quaint.2020.10.020
Nabukalu C, Gieré R. Charcoal as an Energy Resource: Global Trade, Production and Socioeconomic Practices Observed in Uganda. Resources. 2019;8(4):1–27.https://doi.org/10.3390/RESOURCES8040183
Komarayati S, Wibowo S. Karakteristik Asap Cair Dari Tiga Jenis Bambu. J Penelit Has Hutan. 2015;33(2):167–174. https://doi.org/10.20886/jphh.v33i2.824.167-174
Omulo G, Willett S, Seay J, Banadda N, Kabenge I, Zziwa A, et al. Characterization of Slow Pyrolysis Wood Vinegar and Tar from Banana Wastes Biomass as Potential Organic Pesticides. J Sustain Dev. 2017;10(3):81-92. https://doi.org/10.5539/jsd.v10n3p81
Lu X, Jiang J, He J, Sun K, Sun Y. Effect of Pyrolysis Temperature on the Characteristics of Wood Vinegar Derived from Chinese Fir Waste: A Comprehensive Study on Its Growth Regulation Performance and Mechanism. ACS Omega. 2019;4(21):19054–19062. https://doi.org/10.1021/acsomega.9b02240
Wibowo S. Characteristic of Smoke Liquid from Nyamplung Shell. J Penelit Has Hutan. 2012;30(3):218–227. https://doi.org/10.20886/jphh.2012.30.3.218-227
Chen X, Li S, Liu Z, Chen Y, Yang H, Wang X, et al. Pyrolysis Characteristics of Lignocellulosic Biomass Components in the Presence of CaO. Bioresour Technol. 2019;287(121493):1-7. https://doi.org/10.1016/j.biortech.2019.121493
Soh M, Jing Chew J, Sunarso J. Thermogravimetric Analyses (TGA) of Three Oil Palm Biomass Pyrolysis: Kinetics and Reaction Mechanisms. IOP Conf Ser Mater Sci Eng. 2020;778(1):1–7. https://doi.org/10.1088/1757-899X/778/1/012100
Huang J, Zheng B, Hong Z, Ouyang P, Li Y, Wu A, et al. A Comprehensive Study on the Dynamic Change of Thermal Behavior During Lignocellulose Pyrolysis Catalyzed by Plant-Rich Metallic Elements. Front Plant Sci. 2021;12(1):1–12. https://doi.org/10.3389/fpls.2021.665470
Onokwai AO, Okokpujie IP, Ajisegiri ES, Oki M, Adeoye AO, Akinlabi ET. Characterization of Lignocellulosic Biomass Samples in Omu-Aran Metropolis, Kwara State, Nigeria, as Potential Fuel for Pyrolysis Yields. Int J Renew Energy Dev. 2022;11(4):973–981.https://doi.org/10.14710/ijred.2022.45549
Souza JLS de, Guimarí£es VB da S, Campos AD, Lund RG. Antimicrobial Potential of Pyroligneous Extracts – A Systematic Review and Technological Prospecting. Brazilian J Microbiol. 2018;49(1):128–139. https://doi.org/10.1016/j.bjm.2018.07.001
Puno JC V., Catapia JJC, Chua MCB, Cordero PJA, Naguit AFA, Ramirez JML, et al. Automation of Production of Raw Mokusaku Using Raspberry Pi. In: 2019 IEEE 11th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management, HNICEM 2019. 2019;1(1):1-5. https://doi.org/10.1109/HNICEM48295.2019.9072788
Wang J, Potoroko I, Tsirulnichenko L. Food Bioscience Wood Vinegar and Chitosan Compound Preservative Affects on Fish Balls Stability. Food Biosci. 2021;42(1):1–7. https://doi.org/10.1016/j.fbio.2021.101102
Zhu K, Gu S, Liu J, Luo T, Khan Z, Zhang K, et al. Wood Vinegar as a Complex Growth Regulator Promotes the Growth, Yield, and Quality of Rapeseed. Agronomy. 2021;11(3):510. https://doi.org/10.3390/agronomy11030510
Mungkunkamchao T, Kesmala T, Pimratch S, Toomsan B, Jothityangkoon D. Wood Vinegar and Fermented Bioextracts: Natural Products to Enhance Growth and Yield of Tomato (Solanum lycopersicum L.). Sci Hortic. 2013;154:66–72. http://dx.doi.org/10.1016/j.scienta.2013.02.020
Polthanee A, Kumla N, Simma B. Effect of Pistia Stratiotes, Cattle Manure and Wood Vinegar (Pyroligneous Acid) Application on Growth and Yield of Organic Rainfed Rice. Paddy Water Environ. 2015;13(4):337–342. http://dx.doi.org/10.1007/s10333-014-0453-z
Chen J, Wu JH, Si HP, Lin KY. Effects of Adding Wood Vinegar to Nutrient Solution on the Growth, Photosynthesis, and Absorption of Mineral Elements of Hydroponic Lettuce. J Plant Nutr. 2016;39(4):456–462. http://doi.org/10.1080/01904167.2014.992539
Nunkaew T, Kantachote D, Chaiprapat S, Nitoda T, Kanzaki H. Use of Wood Vinegar to Enhance 5-Aminolevulinic Acid Production By Selected Rhodopseudomonas Palustris In Rubber Sheet Wastewater for Agricultural Use. Saudi J Biol Sci. 2018;25(4):642–650. http://dx.doi.org/10.1016/j.sjbs.2016.01.028
Ofoe R, Gunupuru LR, Wang-Pruski G, Fofana B, Thomas RH, Abbey, Lord. Seed Priming with Pyroligneous Acid Mitigates Aluminum Stress, and Promotes Tomato Seed Germination and Seedling Growth. Plant Stress. 2022;4(100083):1-13. https://doi.org/10.1016/j.stress.2022.100083
Yuniwati ED, Lestari AM. Application of Biochar and Liquid Smoke from Biomass Waste Management to Increase Yields And Raise Farmers' Income. In: Proceedings of the International Conference on Community Development (ICCD 2020). 2020;1(1):235–238. https://doi.org/10.2991/assehr.k.201017.052
Lei M, Liu B, Wang X. Effect of Adding Wood Vinegar On Cucumber (Cucumis sativus L) Seed Germination. In: IOP Conf Series: Earth and Environmental Science. 2018;1(1):1–4. http://doi.org/10.1088/1755-1315/128/1/012186
Shan X, Liu X, Zhang Q. Impacts of Adding Different Components of Wood Vinegar on Rape (Brassica napus L.) Seed Germiantion. IOP Conf Ser Earth Environ Sci. 2018;128(012183):1-5. http://doi.org/10.1088/1755-1315/128/1/012183
Luo X, Wang Z, Meki K, Wang X, Liu B, Zheng H, et al. Effect of Co-Application of Wood Vinegar and Biochar on Seed Germination and Seedling Growth. J Soils Sediments. 2019;19(12):3934–3944. https://doi.org/10.1007/s11368-019-02365-9
Aguirre JL, Baena J, Martín MT, Nozal L, Gonzales S, Manjon JL, et al. Composition, Ageing and Herbicidal Properties of Biomass Pyrolysis. Energies. 2020;13(2418):1–17. https://doi.org/10.3390/en13102418
Liu X, Sun H, Gao P, Liu C, Ding X. Antioxidant Properties of Compounds Isolated from Wood Vinegar by Activity-Guided and Ph- Gradient Extraction. J Wood Chem Technol. 2018;38(4):313–323. https://doi.org/10.1080/02773813.2018.1488873
Li R, Narita R, Nishimura H, Marumoto S, Yamamoto SP, Ouda R, et al. Antiviral Activity of Phenolic Derivatives in Pyroligneous Acid from Hardwood, Softwood, And Bamboo. ACS Sustain Chem Eng. 2018;6(1):119–126. http://doi.org/10.1021/acssuschemeng.7b01265
Li R, Narita R, Ouda R, Kimura C, Nishimura H, Yatagai M, Fujita T, Watanabe T. Structure-Dependent Antiviral Activity of Catechol Derivatives in Pyroligneous Acid Against the Encephalomycarditis Virus. RSC Adv. 2018;8(63):35888–35896. http://dx.doi.org/10.1039/C8RA07096B
Chukeatirote E, Jenjai N. Antimicrobial Activity of Wood Vinegar from Dimocarpus Longan. Environment Asia. 2018;11(3):161–169. http://doi.org/10.14456/ea.2018.45
Suresh G, Pakdel H, Rouissi T, Brar SK, Fliss I, Roy C. In Vitro Evaluation of Antimicrobial Efficacy of Pyroligneous Acid from Softwood Mixture. Biotechnol Res Innov. 2019;3(1):47–53. https://doi.org/10.1016/j.biori.2019.02.004
Hagner M, Tiilikkala K, Lindqvist I, Niemelä K, Wikberg H, Källi A, et al. Performance of Liquids from Slow Pyrolysis and Hydrothermal Carbonization in Plant Protection. Waste and Biomass Valorization. 2020;11(3):1005–1016. http://doi.org/10.1007/s12649-018-00545-1
Wang HF, Wang JL, Wang C, Zhang WM, Liu JX, Dai B. Effect of Bamboo Vinegar as an Antibiotic Alternative on Growth Performance and Fecal Bacterial Communities of Weaned Piglets. Livest Sci. 2012;144(1–2):173–180. http://dx.doi.org/10.1016/j.livsci.2011.11.015
Pangnakorn U, Kanlaya S, Kuntha C. Effect of Wood Vinegar for Controlling On Housefly (Musca domestica L). Int J Biol Biomol Agric Food Biotechnol Eng. 2012;6(5):374–377. http://doi.org/10.5281/zenodo.1054869
Akkuş M, Akçay Ç, Yalçın M. Antifungal and Larvicidal Effects of Wood Vinegar on Wood-Destroying Fungi and Insects. Maderas Cienc y Tecnol. 2022;24(37):1–10. http://doi.org/10.4067/s0718-221x2022000100437
Cai K, Jiang S, Ren C, He Y. Significant Damage-Rescuing Effects of Wood Vinegar Extract in Living Caenorhabditis Elegans Under Oxidative Stress. J Sci Food Agric. 2012;92(1):29–36. http://doi.org/10.1002/jsfa.4624
Khai LTL, Nghia NT, Hayashidani H. Study on Effectiveness of Activated Charcoal and Wood Vinegar on Prevention of Piglet Diarrhea. Can Tho Univ J Sci. 2019;11(2):9-15. http://doi.org/10.22144/ctu.jen.2019.018
Oramahi HA, Yoshimura T. Antifungal and Antitermitic Activities of Wood Vinegar from Vitex pubescens Vahl. J Wood Sci. 2013;59(4):344–350. http://doi.org/10.1007/s10086-013-1340-8
Zhou L, Zhang W, Shi C, Li M, Peng D, Liu F. Potential of Cotton Stalk Wood Vinegar in Mitigating CO2 and CH4 Emissions from Cattle Manure Composting: Pilot Study. J Biobased Mater Bioenergy. 2018;12(1):11–21. http://doi.org/10.1166/jbmb.2018.1737
Zhao N, Xin H, Li Z, Wang Z, Zhang L. Supplemental Feeding of Laying Hens with Wood Vinegar to Decrease the Ratio of n-6 to n-3 Fatty Acids in Eggs. Chem Res Chinese Univ. 2019;35(6):983–989. http://doi.org/10.1007/s40242-019-9140-3
Wang B, Li D, Yuan Z, Zhang Y, Ma X, Lv Z, et al. Evaluation of Joint Effects of Perfluorooctane Sulfonate and Wood Vinegar on Planarians, Dugesia japonica. Environ Sci Pollut Res. 2020;27(15):18089–18098. http://doi.org/10.1007/s11356-020-08342-x
Bouarab-Chibane L, Forquet V, Lantéri P, Clément Y, Léonard-Akkari L, Oulahal N, et al. Antibacterial Properties of Polyphenols: Characterization and QSAR (Quantitative Structure-Activity Relationship) Models. Front Microbiol. 2019;10(1):1–23. http://doi.org/10.3389/fmicb.2019.00829
Gomez JP, Velez JPA, Pinzon MA, Arango JAM, Muriel AP. Chemical Characterization and Antiradical Properties of Pyroligneous Acid from A Preserved Bamboo, Guadua Angustifolia Kunth. Brazilian Arch Biol Technol. 2021;64(1):1–13. http://doi.org/10.1590/1678-4324-2021190730
Pangprasit N, Srithanasuwan A, Suriyasathaporn W, Pikulkaew S, Bernard JK, Chaisri W. Antibacterial Activities of Acetic Acid Against Major and Minor Pathogens Isolated from Mastitis in Dairy Cows. Pathogens. 2020;9(11):1–6. http://doi.org/10.3390/pathogens9110961
Park KM, Kim HJ, Choi JY, Koo M. Antimicrobial Effect of Acetic Acid, Sodium Hypochlorite, and Thermal Treatments Against Psychrotolerant Bacillus Cereus Group Isolated from Lettuce (Lactuca sativa l). Foods. 2021;10(9):1–13. http://doi.org/10.3390/foods10092165
Sikorski D, Bauer M, FrÄ…czyk J, DraczyÅ„ski Z. Antibacterial and Antifungal Properties of Modified Chitosan Nonwovens. Polymers. 2022;14(9):2–17. http://doi.org/10.3390/polym14091690
Tegang AS, Mbougueng PD, Sachindra NM, Douanla Nodem NF, Tatsadjieu Ngoune L. Characterization of Volatile Compounds of Liquid Smoke Flavourings from Some Tropical Hardwoods. Sci African. 2020;8(e00443):1–13. https://doi.org/10.1016/j.sciaf.2020.e00443
Komarayati S, Gusmailina, Pari G. Arang dan Cuka Kayu: Produk Hasil Hutan Bukan Kayu Untuk Meningkatkan Pertumbuhan Tanaman dan Serapan Hara Karbon. J Penelit Has Hutan. 2013;31(1):49–62. https://doi.org/10.20886/jphh.2013.31.1.49-62
Straits Research. Wood Vinegar Market Growth, Share, Report to 2030. Maharashtra: Straits Research; 2023. https://straitsresearch.com/report/wood-vinegar-market#
Dewabrata WA. Mengatasi Bau Karet dengan "Asap Cair”. Kompas.com. 2011;1(1). https://nasional.kompas.com/read/2011/02/07/02334755/twitter.com?page=all
Franz JB. Asap Cair Makanan Awet Berkat Limbah Sawit: Lumbung Usaha. Wordpress.com. 2011:1(1). https://lumbungusaha.wordpress.com/2011/07/13/asap-cair/
Arisandy SD, Januar J, Aji JMM. Analisis Nilai Tambah dan Perkembangan Usaha Agroindustri Asap Cair Tempurung Kelapa Pada CV Prima Rosandries di Desa Kemiri Kecamatan Panti Kabupaten Jember. J Ekon Pertan dan Agribisnis. 2019;3(2):244–255. http://doi.org/10.21776/ub.jepa.2019.003.02.3
Gusmailina, Pari G, Komarayati S, Jaojah N, Tulus. Kajian Peran Strategis Kelompok Wanita Tani Dewi Sri Bojongpicung Cianjur Dalam Diversifikasi Produk Berbasis Asap Cair. Majalah Ilmiah Populer Bigang Keteknikan Kehutanan dan Pengolahan Hasil Hutan: For Pro. 2018;7(2). https://www.academia.edu/37724431/Kajian_Peran_KWT_untuk_FORPRO
Budhijanto W, Ariyanto T, Cahyono RB. Bioenergy Potential from Agricultural Residues and Industrial Wastes in Indonesia. J Smart Process. 2019;8(6):253–259. http://doi.org/10.7791/jspmee.8.253
Saputra BYE, Fahmi MF, Widjaja T. Fraksinasi Lignoselulosa dari TKKS dengan Metode Steam Explosion Pretreatment Disertai Penambahan Asam Formiat. J Tek ITS. 2022;11(2):F67-F72. http://doi.org/10.12962/j23373539.v11i2.89395
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
1. Copyright of all journal manuscripts is held by the Jurnal Kesehatan Lingkungan.2. Formal legal provisions to access digital articles of electronic journal are subject to the provision of the Creative Commons Attribution-ShareAlike license (CC BY-NC-SA), which means that Jurnal Kesehatan Lingkungan is rightful to keep, transfer media/format, manage in the form of databases, maintain, and publish articles.
3. Published manuscripts both printed and electronic are open access for educational, research, and library purposes. Additionally, the editorial board is not responsible for any violations of copyright law.
JKESLING by UNAIR is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.