Conceptual Framework of Innovative Library Services Based on Artificial Intelligence (AI) in Order to Accelerate Digital Transformation
Downloads
Background: The Fourth Industrial Revolution (4IR) refers to the transformation of traditional production processes that have been digitized into the real world, enabling total interconnectivity between suppliers and customers with the aim of creating smarter products. The rapid changes in technology brought about by the 4IR have made business operations unstable. This has led to organizations seeking new methods and strategies to gain a competitive advantage in this digital age. Institutions of higher education have responded to this challenge by strengthening the role of university libraries as core components of the educational institution. They have also introduced various digital technologies to improve the learning experience for students.
Methods: qualitative content analysis.
Purpose: organizations to seek new methods and strategies to gain a competitive advantage in the digital era.
Findings: Artificial Intelligence (AI) is one of the technologies that can be integrated into university libraries to enhance the learning experience for students. AI is a discipline that involves computer science, linguistics, information science, neurophysiology, neuroscience, cognitive science, psychological control, and other fields. AI is not just a computer program that mimics human intelligence but can also be used to promote independent learning and meet the special needs of all categories of students. With the support of large amounts of data, AI can form patterns and provide meaning, making the university library an ideal environment to apply this technology to add value to higher education in the future.
Conclusion: The integration of AI into university libraries can provide an opportunity for every library user to access new and exclusive educational services specifically designed to meet individual student needs. Assuming that the library is supported by AI technology, it can help improve learning skills through more personalized technical learning approaches. AI technology can also help librarians explore new ways to meet the needs of library users and support academic activities. By utilizing AI technology, the library can provide sustainable access to various online text resources that are rapidly expanding, and provide services that are not limited to conventional boundaries, accessible to anyone and from anywhere.
ABSTRAK
Kerangka Konseptual Layanan Inovatif Perpustakaan Berbasis Artificial Intelligence (AI) dalam Rangka Mempercepat Transformasi Digital
Latar Belakang: Revolusi Industri keempat (The Fourth Industrial Revolution - 4IR) merujuk pada transformasi proses kegiatan konvensional yang telah didigitalisasi ke dalam dunia nyata, memungkinkan interkoneksi secara total antara pemasok dan pelanggan dengan tujuan menciptakan produk yang lebih cerdas. Perubahan teknologi yang cepat yang dibawa oleh 4IR membuat operasi bisnis menjadi tidak stabil. Hal ini mendorong organisasi untuk mencari metode dan strategi baru untuk memperoleh keunggulan kompetitif di era digital ini. Institusi pendidikan tinggi telah menanggapi tantangan ini dengan memperkuat peran perpustakaan perguruan tinggi sebagai komponen inti dari lembaga Pendidikan. Perguruan Tinggi juga telah memperkenalkan berbagai teknologi digital untuk meningkatkan pengalaman belajar bagi mahasiswa.
Metode: analisis konten kualitatif.
Tujuan: organisasi untuk mencari metode dan strategi baru untuk memperoleh keunggulan kompetitif di era digital.
Temuan: Kecerdasan Buatan (AI) adalah salah satu teknologi yang dapat diintegrasikan ke dalam perpustakaan perguruan tinggi untuk meningkatkan pengalaman belajar bagi mahasiswa. AI merupakan disiplin ilmu yang melibatkan ilmu komputer, linguistik, ilmu informasi, neurofisiologi, neurosains, ilmu kognitif, kontrol psikologis, dan bidang lainnya. AI bukan hanya program komputer yang meniru kecerdasan manusia, tetapi juga dapat digunakan untuk meningkatkan pembelajaran mandiri dan memenuhi kebutuhan khusus semua kategori mahasiswa. Dengan dukungan data yang besar, AI dapat membentuk pola dan memberikan makna, menjadikan perpustakaan perguruan tinggi lingkungan yang ideal untuk menerapkan teknologi ini untuk menambah nilai pada pendidikan tinggi di masa depan.
Kesimpulan: Integrasi AI ke dalam perpustakaan perguruan tinggi dapat memberikan kesempatan bagi setiap pengguna perpustakaan untuk mengakses layanan pendidikan baru dan eksklusif yang dirancang khusus untuk memenuhi kebutuhan individu mahasiswa. Hal tersebut dapat diasumsikan bahwa perpustakaan didukung oleh teknologi AI, dapat membantu meningkatkan keterampilan belajar melalui pendekatan pembelajaran teknis yang lebih personal. Teknologi AI juga dapat membantu pustakawan mengeksplorasi cara baru untuk memenuhi kebutuhan pengguna perpustakaan dan mendukung kegiatan akademik. Dengan memanfaatkan teknologi AI, perpustakaan dapat menyediakan akses berkelanjutan ke berbagai sumber teks online yang terus berkembang, serta memberikan layanan yang tidak terbatas dan dapat diakses oleh siapa saja dan dari mana saja.
Adadi, A., & Berrada, M. (2018). Peeking Inside the Black-Box: A Survey on Explainable Artificial Intelligence (XAI). IEEE Access, 6, 52138–52160. https://doi.org/10.1109/ACCESS.2018.2870052
Agrawal, P., Narain, R., & Ullah, I. (2020). Analysis of barriers in implementation of digital transformation of supply chain using interpretive structural modelling approach. Journal of Modelling in Management, 15(1), 297–317. https://doi.org/10.1108/JM2-03-2019-0066
Al-Shihi, H., Sharma, S. K., & Sarrab, M. (2018). Neural network approach to predict mobile learning acceptance. Education and Information Technologies, 23(5), 1805–1824. https://doi.org/10.1007/s10639-018-9691-9
Andre, L., Michael, B., Daniel, R., & Christian, K. (2018). Framework for the identification and demand-orientated classification of digital technologies. 2018 IEEE International Conference on Technology Management, Operations and Decisions, ICTMOD 2018, 31–36. https://doi.org/10.1109/ITMC.2018.8691135
Asemi, A., Ko, A., & Nowkarizi, M. (2020). Intelligent libraries: a review on expert systems, artificial intelligence, and robot. Library Hi Tech, 39(2), 412–434. https://doi.org/10.1108/LHT-02-2020-0038
Assar, S., & Hafsi, M. (2019). Managing strategy in digital transformation context: An exploratory analysis of enterprise architecture management support. Proceedings - 21st IEEE Conference on Business Informatics, CBI 2019, 1, 165–173. https://doi.org/10.1109/CBI.2019.00026
Azimi, M. H., Neamatollahi, Z., & Dakhesh, S. (2022). Identifying and Categorizing the Dimensions and Applications of Artificial Intelligence in Library Services Using Meta-Synthesis Method. Library and Information Sciences, 2022(3), 5–35. http://lis.aqr-libjournal.ir/article_136707.html%0Ahttp://lis.aqr-libjournal.ir/article_136707_ff99007f6010593858a6535f667e5e42.pdf
Barth, H., Ulvenblad, P. O., & Ulvenblad, P. (2017). Towards a conceptual framework of sustainable business model innovation in the agri-food sector: A systematic literature review. Sustainability (Switzerland), 9(9). https://doi.org/10.3390/su9091620
Bojorque, R., & Pesántez-Avilés, F. (2020). Academic Quality Management System Audit Using Artificial Intelligence Techniques. Advances in Intelligent Systems and Computing, 965, 275–283. https://doi.org/10.1007/978-3-030-20454-9_28
Brynjolfsson, E., Rock, D., & Syverson, C. (2017). Artificial intellegience and the modern productivty paradox. https://www.nber.org/system/files/working_papers/w24001/w24001.pdf
Camarinha-Matos, L. M., Fornasiero, R., Ramezani, J., & Ferrada, F. (2019). Collaborative networks: A pillar of digital transformation. Applied Sciences (Switzerland), 9(24). https://doi.org/10.3390/app9245431
Chai, C. S., Wang, X., & Xu, C. (2020). An extended theory of planned behavior for the modelling of chinese secondary school students' intention to learn artificial intelligence. Mathematics, 8(11), 1–18. https://doi.org/10.3390/math8112089
Chen, L., Chen, P., & Lin, Z. (2020). Artificial Intelligence in Education: A Review. IEEE Access, 8, 75264–75278. https://doi.org/10.1109/ACCESS.2020.2988510
Chernov, A., & Chernova, V. (2019). Artificial Intelligence in Managemnet : Challenges. 38th International Scientific Conference on Economic and Social Development –, March, 21–22.
Claudé, M., & Combe, D. (2018). The Roles of Artificial Intelligence and Human in Decision Making: A focus on knowledge-intensive firms. Thesis, 1–94. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-150022
Coombs, C. (2020). Will COVID-19 be the tipping point for the Intelligent Automation of work? A review of the debate and implications for research. International Journal of Information Management, 55(June), 102182. https://doi.org/10.1016/j.ijinfomgt.2020.102182
Cope, B., Kalantzis, M., & Searsmith, D. (2021). Artificial intelligence for education: Knowledge and its assessment in AI-enabled learning ecologies. Educational Philosophy and Theory, 53(12), 1229–1245. https://doi.org/10.1080/00131857.2020.1728732
Cox, A. M., Pinfield, S., & Rutter, S. (2019). The intelligent library: Thought leaders' views on the likely impact of artificial intelligence on academic libraries. Library Hi Tech, 37(3), 418–435. https://doi.org/10.1108/LHT-08-2018-0105
Cugurullo, F. (2020). Urban Artificial Intelligence: From Automation to Autonomy in the Smart City. Frontiers in Sustainable Cities, 2(July), 1–14. https://doi.org/10.3389/frsc.2020.00038
Dejoux, C., & Léon, E. (2018). Metamorphosis of managers in the digital and artificial intelligence era. Pearson Book. https://www.pearson.fr/fr/book/?gcoi=27440100127590
Di Vaio, A., Palladino, R., Hassan, R., & Escobar, O. (2020). Artificial intelligence and business models in the sustainable development goals perspective: A systematic literature review. Journal of Business Research, 121(January), 283–314. https://doi.org/10.1016/j.jbusres.2020.08.019
Fahimirad, M. (2018). A Review on Application of Artificial Intelligence in Teaching and Learning in Educational Contexts. International Journal of Learning and Development, 8(4), 106. https://doi.org/10.5296/ijld.v8i4.14057
Folorunsho, A., Emmanuel Omeiza, M., Lanre, A., & Omeiza, E. (2020). Application of Artificial Intelligence and Robotics in Libraries : A Review of Literature. ILIS Journal of Librarianship and Informatics, 3(2), 93–98. https://www.researchgate.net/publication/350783802
González-Calatayud, V., Prendes-Espinosa, P., & Roig-Vila, R. (2021). Artificial intelligence for student assessment: A systematic review. Applied Sciences (Switzerland), 11(12). https://doi.org/10.3390/app11125467
Hamidi, H., & Jahanshaheefard, M. (2019). Essential factors for the application of education information system using mobile learning: A case study of students of the university of technology. Telematics and Informatics, 38, 207–224. https://doi.org/10.1016/j.tele.2018.10.002
Hinojo-Lucena, F. J., Aznar-Díaz, I., Cáceres-Reche, M. P., & Romero-Rodríguez, J. M. (2019). Artificial intelligence in higher education: A bibliometric study on its impact in the scientific literature. Education Sciences, 9(1). https://doi.org/10.3390/educsci9010051
Hwang, S., Song, Y., & Kim, J. (2021). Evaluation of ai-assisted telemedicine service using a mobile pet application. Applied Sciences (Switzerland), 11(6). https://doi.org/10.3390/app11062707
Jha, K., Doshi, A., Patel, P., & Shah, M. (2019). A comprehensive review on automation in agriculture using artificial intelligence. Artificial Intelligence in Agriculture, 2, 1–12. https://doi.org/10.1016/j.aiia.2019.05.004
Kaplan, A., & Haenlein, M. (2018). Call for Papers: Special Issue on Digital Transformation and Disruption. Business Horizons, 61(6), 809–810. https://doi.org/10.1016/j.bushor.2018.07.014
Keerthana, T., Bhavani, T., Suma Priya, N., Sai Prathyusha, V., & Santhi Sri, K. (2020). Flipkart product recommendation system. Journal of Engoneering Science, 11(4), 515–522. www.jespublication.com
Krippendorff, K. (2013). Content Anaysis An Introduction to Its Methodology. Sage Publication, 1–97. https://web.stanford.edu/class/comm1a/readings/krippendorf-ch1and4.pdf
Kumar, S. (2019). Artificial intelligence divulges effective tactics of top management institutes of India. Benchmarking, 26(7), 2188–2204. https://doi.org/10.1108/BIJ-08-2018-0251
Lund, B. D., Omame, I., Tijani, S., & Agbaji, D. (2020). Perceptions toward artificial intelligence among academic library employees and alignment with the diffusion of innovations' adopter categories. College and Research Libraries, 81(5), 865–882. https://doi.org/10.5860/crl.81.5.865
Magistretti, S., Dell'Era, C., & Messeni Petruzzelli, A. (2019). How intelligent is Watson? Enabling digital transformation through artificial intelligence. Business Horizons, 62(6), 819–829. https://doi.org/10.1016/j.bushor.2019.08.004
Malapane, T. A. (2019). The impact of artificial intelligence and internet of things in the transformation of E-business sector. 2019 Systems and Information Engineering Design Symposium, SIEDS 2019, 1–5. https://doi.org/10.1109/SIEDS.2019.8735644
Matt, C., Hess, T., & Benlian, A. (2015). Digital Transformation Strategies. Business and Information Systems Engineering, 57(5), 339–343. https://doi.org/10.1007/s12599-015-0401-5
Mei, Z., Chen, Y., Jiang, M., Wu, H., & Cheng, L. (2017). Mobile robots path planning based on dynamic movement primitives library. Chinese Control Conference, CCC, 6906–6911. https://doi.org/10.23919/ChiCC.2017.8028446
Mirchi, N., Bissonnette, V., Yilmaz, R., Ledwos, N., Winkler-Schwartz, A., & Del Maestro, R. F. (2020). The virtual operative assistant: An explainable artificial intelligence tool for simulation-based training in surgery and medicine. PLoS ONE, 15(2), 1–15. https://doi.org/10.1371/journal.pone.0229596
Moreno-Guerrero, A. J., López-Belmonte, J., Marín-Marín, J. A., & Soler-Costa, R. (2020). Scientific development of educational artificial intelligence in web of science. Future Internet, 12(8), 1–17. https://doi.org/10.3390/FI12080124
Nadkarni, S., & Prügl, R. (2021). Digital transformation: a review, synthesis and opportunities for future research. In Management Review Quarterly (Vol. 71, Issue 2). Springer International Publishing. https://doi.org/10.1007/s11301-020-00185-7
Nandal, N., Tanwar, R., & Pruthi, J. (2020). Machine learning based aspect level sentiment analysis for Amazon products. Spatial Information Research, 28(5), 601–607. https://doi.org/10.1007/s41324-020-00320-2
Oertwig, N., Gering, P., Knothe, T., & Rimmelspacher, S. O. (2019). User-centric process management system for digital transformation of production. Procedia Manufacturing, 33, 446–453. https://doi.org/10.1016/j.promfg.2019.04.055
Paiva, S., Ahad, M. A., Tripathi, G., Feroz, N., & Casalino, G. (2021). Enabling technologies for urban smart mobility: Recent trends, opportunities and challenges. Sensors, 21(6), 1–45. https://doi.org/10.3390/s21062143
Pflaum, A. A., & Gölzer, P. (2018). The IoT and digital transformation: Toward the data-driven enterprise. IEEE Pervasive Computing, 17(1), 87–91. https://doi.org/10.1109/MPRV.2018.011591066
R-Moreno, M. D., Castaño, B., Barrero, D. F., & Hellín, A. M. (2014). Efficient Services Management in Libraries using AI and Wireless techniques. Expert Systems with Applications, 41(17), 7904–7913. https://doi.org/10.1016/j.eswa.2014.06.047
Schrettenbrunnner, M. B. (2020). Artificial-Intelligence-Driven Management. IEEE Engineering Management Review, 48(2), 15–19. https://doi.org/10.1109/EMR.2020.2990933
Schwab, K. (2016). The Fourth Industrial Revolution: what it means, how to respond. Fourth Industrial Revolution. https://www.weforum.org/agenda/2016/01/the-fourth-industrial-revolution-what-it-means-and-how-to-respond/
Sherwani, F., Asad, M. M., & Ibrahim, B. S. K. K. (2020). Collaborative Robots and Industrial Revolution 4.0 (IR 4.0). 2020 International Conference on Emerging Trends in Smart Technologies, ICETST 2020, 0. https://doi.org/10.1109/ICETST49965.2020.9080724
Singh, R. (2021). Study of AI and ecommerce ecosystem. 4(2), 78–87.
Soni, V. D. (2019). Emerging Roles of Artificial Intelligence in ecommerce. International Journal of Trend in Scientific Research and Development (IJTSRD), 4(5), 493–503.
Ulas, D. (2019). Digital Transformation Process and SMEs. Procedia Computer Science, 158, 662–671. https://doi.org/10.1016/j.procs.2019.09.101
Van Dyk, R., & Van Belle, J. P. (2019). Factors influencing the intended adoption of digital transformation: A South African case study. Proceedings of the 2019 Federated Conference on Computer Science and Information Systems, FedCSIS 2019, 18, 519–528. https://doi.org/10.15439/2019F166
Velasquez, N., Estevez, E., & Pesado, P. (2019). Methodological framework based on digital technologies for the implementation of industry 4.0 in SMEs. 2019 6th International Conference on EDemocracy and EGovernment, ICEDEG 2019, 371–374. https://doi.org/10.1109/ICEDEG.2019.8734282
Wheatley, A., & Hervieux, S. (2019). Artificial intelligence in academic libraries: An environmental scan. Information Services & Use, 39(4), 347–356. https://doi.org/10.3233/isu-190065
Winkler, B., & Kiszl, P. (2022). Views of Academic Library Directors on Artificial Intelligence: A Representative Survey in Hungary. New Review of Academic Librarianship, 28(3), 256–278. https://doi.org/10.1080/13614533.2021.1930076
Yeh, S. T., & Ramirez, R. (2016). A conceptual model of service innovation: The case of academic libraries. AMCIS 2016: Surfing the IT Innovation Wave - 22nd Americas Conference on Information Systems. https://aisel.aisnet.org/amcis2016/SCU/%0APresentations/8.
Yeh, S. T., & Walter, Z. (2016). Determinants of service innovation in academic libraries through the lens of disruptive innovation. College and Research Libraries, 77(6), 795–804. https://doi.org/10.5860/crl.77.6.795
Yigitcanlar, T., & Cugurullo, F. (2020). The sustainability of artificial intelligence: an urbanistic viewpoint from the lens of smart and sustainable cities. Sustainability (Switzerland), 12(20), 1–24. https://doi.org/10.3390/su12208548
Yigitcanlar, T., Desouza, K. C., Butler, L., & Roozkhosh, F. (2020). Contributions and risks of artificial intelligence (AI) in building smarter cities: Insights from a systematic review of the literature. Energies, 13(6). https://doi.org/10.3390/en13061473
Yu, K., Gong, R., Sun, L., & Jiang, C. (2019). The Application of Artificial Intelligence in Smart Library. 100(Icoi), 708–713. https://doi.org/10.2991/icoi-19.2019.124
Zhang, J., Li, X., & Zhang, L. (2016). Exploring the virtual reference service based on Web 3.0 environments in the library. Proceedings - 2015 8th International Conference on BioMedical Engineering and Informatics, BMEI 2015, Bmei, 862–866. https://doi.org/10.1109/BMEI.2015.7401623
Zimmermann, A., Schmidt, R., Sandkuhl, K., Jugel, D., Bogner, J., & Möhring, M. (2018). Evolution of Enterprise Architecture for Digital Transformation. Proceedings - IEEE
![Creative Commons License](http://i.creativecommons.org/l/by-nc-sa/4.0/88x31.png)
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
1. The journal allows the author to hold the copyright of the article without restrictions.2. The journal allows the author(s) to retain publishing rights without restrictions
3. The legal formal aspect of journal publication accessibility refers to Creative Commons Attribution- NonCommercial-ShareAlike: CC BY-NC-SA