the Ameliorative effects of ascorbic acid on hematological and water quality parameters following a 100 km transportation of adult Clarias gariepinus
Downloads
Experiments were performed to determine the effects of ascorbic acid on haematological and water quality parameters of Clarias gariepinus subjected to road transportation. A total of 40 apparently healthy adult Clarias gariepinus of an average weight of 450.46 ± 23.06 g and an average length of 38. 23 ± 4.46 cm were used for the experiment and were divided into two groups. Group I (AAF) was administered ascorbic acid daily for one month and on the day of transportation while group II (NAF) was not administered. After transportation of the erythrocyte counts, packed cell volume was significantly higher in group I (P < 0.05). Total leucocyte count, neutrophil count, and neutrophil/lymphocyte ratio of group I were significantly lower (P < 0.05) in group I compared to group II. The concentrations of nitrite, nitrate, and ammonia were significantly higher (P < 0.05) in group II compared to group I post-transportation. The dissolved oxygen content of group I was however higher (P < 0.05) in group I compared to group II. It was therefore concluded that ascorbic acid modulated some haematological and water quality parameters of Clarias gariepinus and may be beneficial to the fish in ameliorating the stress of transportation.
Abdel-Tawwab, M., M.N. Monier, S. H. Hoseinifar and C. Faggio. 2019. Fish response to hypoxia stress: growth, physiological, and immunological biomarkers. Fish Physiol and Biochem, 45(3): 997–1013. https://doi.org/10.1007/s10695-019-00614-9
Aguirre-Guzman, G.,V. Carvajal-de-la-Fuente, M. Neri-Coronado, J. Loredo-Ostiand J. L. Rábago-Castro. 2016. Hematological and clinical chemistry changes induced by acute stress during handling and capture of catfish (Ictalurus punctatus). Rev. MVZ Córdoba; 21:5345–5354 https://doi.org/10.21897/rmvz.601
American Public Health Association (APHA). 2005. Standard Methods for the Examination of Water and Wastewater (21st ed). Washington DC: American Public Health Association. 1220 p
Bolner, K. C. S., C. E. Copatti, F. L. Rosso, V. L.Loro and B. Baldisserotto. 2014. Water pH and metabolic parameters in silver catfish (Rhamdia quelen). Biochem Sys Eco; 56:202-208. DOI: 10.1016/j.bse.2014.06.006
Bowzer, J. A, Bergman and J. Trushenski (2014). Growth performance of largemouth bass-fed fish meal derived from Asian carp. North Ame Aqua; 76(3):185–9. DOI: 10.1080/15222055.2014.893473
Cavero, B. A., S. M. Pereira-Filho, A. M. Bordinhon, F. A. L. Fonseca, D. R. Ituassú, R. Roubach and E. A. Ono. 2004. Tolerí¢ncia de juvenis de pirarucu ao aumento da concentraçí£o de amí´nia em ambiente confinado. Pesquisa Agropecuária Brasileira; 39(5):513-516. https://doi.org/10.1590/S0100-204X2004000500015
Cook, K.V., S.H.McConnachie, K.M. Gilmour, S.G. Hinch, and S.J. Cooke. 2011. Fitness and behavioral correlates of pre-stress and stress-induced plasma cortisol titers in pink salmon (Oncorhynchus gorbuscha) upon arrival at spawning grounds. Horm Behav;60:489–497. https://doi.org/10.1016/j.yhbeh.2011.07.017
Dacie, J.V. and S.M. Lewis. 2001. Practical Haematology. 9th Edition, Churchill Livingstone, London, 633.
Davis, A.K., D.L. Maney and J.C. Maerz. 2008. The use of leukocyte profiles to measure stress in vertebrates: a review for ecologists. Funct Ecol, 22: 760-772. https://doi.org/10.1111/j.1365-2435.2008.01467.x
DobÅ¡ikova R., Z. Svobodova, J. Blahova, H.Modra and J VeliÅ¡ek. 2009. The effect of transport on biochemical and haematological indices of common carp (Cyprinus carpio L.). Czech J. Anim; Sci. 54:510–518. https://doi.org/10.17221/52/2009-CJAS
EFSA. 2004. Opinion of the scientific panel for animal health and welfare on a request from the commission related to the welfare of animals during transport. EFSA J. 44: 1–36. https://doi.org/10.2903/j.efsa.2004.44
Gatica, M. C., G. Monti, C. Gallo, T. G. Knowles and P. D. Warriss. 2008. Effects of well-boat transportation on the muscle pH and onset of rigor mortis in Atlantic salmon. Vet. Rec; 163 :111–116. https://doi.org/10.1136/vr.163.4.111
Golombieski, J. I., G. Koakoski, A. J. Becker, A. P. G. Almeida, C. Toni, I. A. Finamor and B. Baldisserotto. 2013. Nitrogenous and phosphorus excretions in juvenile silver catfish (Rhamdia quelen) exposed to different water hardness, humic acid, and pH levels. Fish Physiol Biochem; 39(4): 837-849. https://doi.org/10.1007/s10695-012-9744-8
Harmon, T.S. (2009) Methods for Reducing Stressors and Maintaining Water Quality Associated with Live Fish Transport in Tanks: A Review of the Basics. Reviews in Aquaculture, 1, 58-66.
https://doi.org/10.1111/j.1753-5131.2008.01003.x
Hong, J., X. Chen, S.Liu, Z. Fu, M. Han, Y. Wang, Z. Zhifeng Gu,Z. Ma. 2019. Impact of fish density on water quality and physiological response of golden pompano (Trachinotus ovatus) flingerlings during transportation. Aquaculture; 507: 260-265. https://doi.org/10.1016/j.aquaculture.2019.
Ibrahim, R. E., S. A. A. Ahmed, S. A. Amer, N. A. Al-Gabri, A. I. Ahmed, A.-W. Abdel-Warith, A. and A. E. Metwally. 2020. Influence of vitamin C feed supplementation on the growth, antioxidant activity, immune status, tissue histomorphology, and disease resistance in Nile tilapia, Oreochromis niloticus. Aquac Rep; 18:100545. https://doi.org/10.1016/j.aqrep.2020.100545
Jia, R., L. Wang, Y. Hou, W. Feng, B. Li and J. Zhu. 2022. Effects of Stocking Density on the Growth Performance, Physiological Parameters, Redox Status and Lipid Metabolism of Micropterus salmoides in Integrated Rice–Fish Farming Systems. Antioxidants; 11: 1215. https://doi.org/10.3390/antiox11071215
Jerez-Cepa, I and I. Ruiz-Jarabo. 2021. Physiology: An Important Tool to Assess the Welfare of Aquatic Animals. Biology; 10: 61. https://doi.org/10.3390/ biology1001006.
Manuel, R., J. Boerrigter, J. Roques, J. van der Heul, R. van den Bos, G. Flik, and H. van de Vis. 2014. Stress in African catfish (Clarias gariepinus) following overland transportation. Fish Physiol Biochem; 40(1): 33–44. https://doi.org/10.1007/s10695-013-9821-7
McMullin, M.F., D. Bareford, P. Campbell, A.R. Green, C. Harrison, B. Hunt, D. Oscier, M.I., Polkey, J.T. Reilly, E. Rosenthal, K. Ryan, T.C., Pearson and B. Wilkins. 2005. General Haematology Task Force of the British Committee for Standards in Haematology. Guidelines for the diagnosis, investigation, and management of polycythemia/erythrocytosis. Br. J Haematol; 130(2):174-95. https://doi.org/10.1111/j.1365-2141.2005.05535.x. PMID: 16029446.
Pakhira, C., T. S. Nagesh, T. J. Abraham, G. Dash and S. Behera. 2015. Stress responses in rohu, Labeo rohita transported at different densities. Aquac. Rep; 2:39–45. https://doi.org/ 10.1016/j.aqrep.2015.06.002
Park, J. Y., K. H. Han, J. K. Cho, K. M. Kim, M. H. Son, J.M. Park and K.W. Kang.2016. Survival Rate and Hematological Responses with Temperature Changes of Red Spotted Grouper, Epinephelus akaara in South Korea. Develop Reprod; 20(2): 103–112. https://doi.org/10.12717/DR.2016.20.2.103
Portz, D.E., C.M. Woodley and J.J. Cech. 2006. Stress-associated impacts of short-term holding on fishes. Rev Fish Biol Fisheries; 16: 125–170. https://doi.org/10.1007/s11160-006-9012-z
Pottinger, T. G. 2017. Modulation of the stress response in wild fish is associated with variation in dissolved nitrate and nitrite. Environ Pollut; 225:550-558. https://doi.org/10.1016/j.envpol.2017.03.021
Sampaio, F. D. F. and C. A. Freire. 2016. An overview of stress physiology of fish transport: changes in water quality as a function of transport duration. Fish and Fisheries; 17(4):1055–1072. https://doi.org/10.1111/faf.12158
Serafini, S., C.F. Souza, M.D. Baldissera, B. Baldisserotto and A.S. Silva. 2019. Fish exposed to eprinomectin show hepatic oxidative stress and impairment in enzymes of the phosphor transfer network. Aquaculture 508:199–205. https://doi.org/ 10.1016/j.aquaculture.2019.04.081
Shahjahan, M., M. J. Islam, M. T. Hossain, M.A. Mishu, J. Hasan, and C, Brown. 2022. Blood biomarkers as diagnostic tools: An overview of climate-driven stress responses in fish(Review). Science of The Total Environment;843: 156910, https://doi.org/10.1016/j.scitotenv.2022.156910
Si, L. J., L.Q. Pan, X. Zhang, H.D. Wang and C. Wei. 2019. Evidence that dopamine is involved in neuroendocrine regulation, gill intracellular signaling pathways and ion regulation in Litopenaeus vannamei. J Exp Biol; 222(15): https:// doi.org/10.1242/jeb.204073
Smirnoff, N. 2018. Ascorbic acid metabolism and functions: A comparison of plants and mammals. FreeRadBiol Med, 122:116–129. https://doi.org/10.1016/j.freeradbiomed.2018.03.033
Sinha, A. K., R. Rasoloniriana, A.F. Dasan, N, Pipralia, R. Blust and G. De Boeck. 2015. Interactive effect of high environmental ammonia and nutritional status on ecophysiological performance of European sea bass (Dicentrarchus labrax) acclimated to reduced seawater salinities. Aquatic toxicology; 160:39–56. https://doi.org/10.1016/j.aquatox.2015.01.005
Stara, A., A. Kouba and J. Velisek. 2018. Biochemical and histological effects of subchronic exposure to atrazine in crayfish Cherax destructor. Chemico-Biological Interactions; 291:95–102. https://doi.org/10.1016/j.cbi.2018.06.012
Tacchi, L., L. Lowrey, R. Musharrafieh, K. Crossey, E.T. Larragoite and I. Salinas. 2015. Effects of transportation stress and addition of salt to transport water on the skin mucosal homeostasis of rainbow trout (Oncorhynchus mykiss). Aquaculture;435:120–127. https://doi.org/10.1016/j.aquaculture.2014.09.027
Tahmasebi-Kohyani, A., S. Keyvanshokooh, A. Nematollahi, N. Mahmoudi, and H. Pasha-Zanoosi. 2012. Effects of dietary nucleotides supplementation on rainbow trout (Oncorhynchus mykiss) performance and acute stress response. Fish Physiol. Biochem; 38:431–440. https://doi.org/10.1007/s10695-011-9524-x
Voigt.L.( 2000) Heamtology Techniques and concept for Veterinary Technicians Iowa State University Press Ames, p139
Wendelaar-Bonga, S. E. 1997. The stress response in fish. Physiol Rev; 77(3):591–625. https://doi.org/10.1152/physrev.1997.77.3.591
Yichao R., M. Xianhui, Y. Yu, L. Bing, Z. Yangen and Z. Chunyan. 2022. Effects of transportation stress on antioxidation, immunity capacity and hypoxia tolerance of rainbow trout (Oncorhynchus mykiss), Aqua Rep; 22: 100940. https://doi.org/ 10.1016/j.aqrep.2021.100940
Copyright (c) 2023 Deborah Arimie Adah, Sylvanus, Charlse Obiora Nwonuma, Boluwaji Olaosebikan , Taiwo Oyekunle
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Veterinary Medicine Journal by Unair is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
1. The Journal allows the author to hold the copyright of the article without restrictions.
2. The Journal allows the author(s) to retain publishing rights without restrictions
3. The legal formal aspect of journal publication accessibility refers to Creative Commons Attribution Share-Alike (CC BY-SA).