Cholesterol, HDL, and LDL Content in Quail Egg Yolk with Probiotics and Acidifier Feeding
Downloads
The higher cholesterol content in quail eggs compared to chicken and duck eggs needs to be taken into account, so there is a need for research focused on this issue. The aim of this study was to prove that the use of probiotics (Pediococcus pentosaceus ABY 118, Lactococcus lactis) and acidifiers in quail can give positive results on reducing cholesterol and LDL and increasing HDL content in egg yolk. Thirty quails were randomized into three treatments with 10 replicates. The treatments studied were: P0 = Control (no probiotic and no acidifier); P1 = Probiotic 20 ml/liter drinking water + Acidifier 5 g/kg feed; P2 = Probiotic 40 ml/liter drinking water + Acidifier 10 g/kg feed. The results of this study showed that there was a significant difference between cholesterol from the P0 with P1 and P2 treatments. Cholesterol in P1 and P2 was significantly lower than P0. HDL in the P1 and P2 treatments was significantly higher than the P0 treatment. LDL in the P1 and P2 treatments was lower than the P0 treatment. The conclusion that can be drawn from the results of this study is that the use of probiotics and acidifiers can reduce cholesterol, increase HDL, and reduce LDL.
Andriani, A.D., Lokapirnasari, W.P., Karimah, B., Hidanah, S., Al-Arif, M.A. Soeharsono, and Harijani, N., 2020. Effectivity of Probiotic Lactobacillus casei and Lactobacillus rhamnosus as Alternate Antibiotic Growth Promoter on Cholesterol, Low Density Lipoprotein and High Density Lipoprotein of Broiler Chickens. J. Med. Vet., 3(1), pp.114-122. DOI: https://doi.org/10.20473/jmv.vol3.iss1.2020.114-122
Anton, M., 2007. High-density lipoproteins (HDL) or lipovitellin fraction. In: Huopalahti, R., López-Fandiño, R., Anton, M., and Schade, R. (Eds.), Bioactive Egg Compounds, pp.13-16. Berlin, Heidelberg: Springer Nature. DOI: https://doi.org/10.1007/978-3-540-37885-3_3
Anton, M., Martinet, V., Dalgalarrondo, M., Beaumal, V., David-Briand, E., and Rabesona, H., 2003. Chemical and structural characterization of low-density lipoproteins purified from hen egg yolk. Food Chem., 83(2), pp.175-183. DOI: https://doi.org/10.1016/S0308-8146(03)00060-8
Athanasiou, L.S., Fotiadis, D.I., and Michalis, L.K., 2017. Atherosclerotic plaque characterization methods based on coronary imaging. Academic Press. DOI: https://doi.org/10.1016/B978-0-12-804734-7.00006-3
Barter, P.J., Nicholls, S., Rye, K.A., Anantharamaiah, G.M., Navab, M., and Fogelman, A.M., 2004. Antiinflammatory properties of HDL. Circulation Research, 95(8), pp.764-772. DOI: https://doi.org/10.1161/01.RES.0000146094.59640.13.
Boren, J., Chapman, M.J., Krauss, R.M., Packard, C.J., Bentzon, J.F., Binder, C.J., Daemen, M.J., Demer, L.L., Hegele, R.A., Nicholls, S.J., and Nordestgaard, B.G., 2020. Low-density lipoproteins cause atherosclerotic cardiovascular disease: pathophysiological, genetic, and therapeutic insights: a consensus statement from the European Atherosclerosis Society Consensus Panel. European Heart Journal, 41(24), pp.2313-2330. DOI: https://doi.org/10.1093/eurheartj/ehz962
Brites, F., Martin, M., Guillas, I., and Kontush, A., 2017. Antioxidative activity of high-density lipoprotein (HDL): Mechanistic insights into potential clinical benefit. BBA Clinical, 8, pp.66-77. DOI: https://doi.org/10.1016/j.bbacli.2017.07.002
Charla, E., Mercer, J., Maffia, P., and Nicklin, S.A., 2020. Extracellular vesicle signalling in atherosclerosis. Cellular Signalling, 75, pp.109751. DOI: https://doi.org/10.1016/j.cellsig.2020.109751
Cheng, Y., Liu, J., and Ling, Z., 2022. Short-chain fatty acids-producing probiotics: A novel source of psychobiotics. Critical reviews in food science and nutrition, 62(28), pp.7929-7959. DOI: https://doi.org/10.1080/10408398.2021.1920884
Cox, R.A., and García-Palmieri, M.R., 1990. Cholesterol, triglycerides, and associated lipoproteins. In: Walker, H. K., Hall, W. D., and Hurst, J. W. (Eds.), Clinical Methods: The History, Physical, and Laboratory Examinations. (3rd edn.). Boston: Butterworths.
Craig, M., Yarrarapu, S.N.S., and Dimri, M., 2018. Biochemistry, Cholesterol. StatPearls Publishing, Treasure Island (FL).
Denimal, D., 2023. Antioxidant and anti-inflammatory functions of high-density lipoprotein in type 1 and type 2 diabetes. Antioxidants, 13(1), pp.57. DOI: https://doi.org/10.3390/antiox13010057
Feingold, K.R., 2024. Introduction to lipids and lipoproteins. Endotext [internet]. https://www.ncbi.nlm.nih.gov/books/NBK305896/ .
Firrman, J., Liu, L., Mahalak, K., Tanes, C., Bittinger, K., Tu, V., Bobokalonov, J., Mattei, L., Zhang, H., and Van den Abbeele, P., 2022. The impact of environmental pH on the gut microbiota community structure and short chain fatty acid production. FEMS Microbiology Ecology, 98(5), pp.1-9. DOI: https://doi.org/10.1093/femsec/fiac038
Hadj Ahmed, S., Kharroubi, W., Kaoubaa, N., Zarrouk, A., Batbout, F., Gamra, H., Najjar, M.F., Lizard, G., Hininger-Favier, I., and Hammami, M., 2018. Correlation of trans fatty acids with the severity of coronary artery disease lesions. Lipids Health Dis., 17, pp.1-13. DOI: https://doi.org/10.1186/s12944-018-0699-3
Hara, H., Haga, S., Aoyama, Y., and Kiriyama, S., 1999. Short-chain fatty acids suppress cholesterol synthesis in rat liver and intestine. J. Nutr., 129(5), pp.942-948. DOI: https://doi.org/10.1093/jn/129.5.942
Hara, H., Haga, S., Kasai, T., and Kiriyama, S., 1998. Fermentation products of sugar-beet fiber by cecal bacteria lower plasma cholesterol concentration in rats. J. Nutr., 128(4), pp.688-693.
Heurtault, B., Saulnier, P., Pech, B., Proust, J.E., and Benoit, J.P., 2003. Physico-chemical stability of colloidal lipid particles. Biomaterials, 24(23), pp.4283-4300. DOI: https://doi.org/10.1016/S0142-9612(03)00331-4
Hong, D., Tang, W., Li, F., Liu, Y., Fu, X., and Xu, Q. 2024. The short-chain fatty acid propionate prevents ox-LDL-induced coronary microvascular dysfunction by alleviating endoplasmic reticulum stress in HCMECs. PlOS One, 19(5), p.e0304551. DOI: https://doi.org/10.1371/journal.pone.0304551
Huggins, C.E., James, A.P., Bonham, M.P., Clark, K.M., and Lee, S.D., 2022. Postprandial lipemia and the relationship to health. In: Li, D. (Ed.), Advances in Dietary Lipids and Human Health, pp.193-209. Academic Press. DOI: https://doi.org/10.1016/B978-0-12-823914-8.00019-7
Jaya, I.N.S., Haryani, N.K.D., and Indarsih, B., 2019. Menurunnya kandungan kolesterol telur itik dengan pemberian bawang putih segar dengan waktu analisis yang berbeda. Jurnal Sain Veteriner, 37(1), pp.61-68. DOI: https://doi.org/10.22146/jsv.48517
Lee, Y., and Siddiqui, W.J., 2019. Cholesterol levels. StatPearls Publishing, Treasure Island (FL).
Levitan, I., Volkov, S., and Subbaiah, P.V., 2010. Oxidized LDL: diversity, patterns of recognition, and pathophysiology. Antioxid. Redox Sig., 13(1), pp.39-75. DOI: https://doi.org/10.1089/ars.2009.2733
Lokapirnasari, W.P., Agustono, B., Al Arif, M.A., Maslachah, L., Chandra, E.H., and Yulianto, A.B., 2022. Effect of probiotic and Moringa oleifera extract on performance, carcass yield, and mortality of Peking duck. Veterinary World, 15(3), pp.694. DOI: https://doi.org/10.14202/vetworld.2022.694-700
Lokapirnasari, W.P., Dewi, A.R., Fathinah, A., Hidanah, S., Harijani, N., Karimah, B., and Andriani, A.D., 2017. Effect of probiotic supplementation on organic feed to alternative antibiotic growth promoter on production performance and economics analysis of quail. Veterinary World, 10(12), pp.1508. DOI: https://doi.org/10.14202/vetworld.2017.1508-1514
Lokapirnasari, W.P., Lamid, M., Kurnijasanti, R., Teriyanto, N., Kartika, A.T., Chandra, E.H., Riong, K.K., and Yulianto, A.B., 2020a. Supplementation of synbiotic content of Moringa oleifera extract and Lactobacillus to improve growth performance in starter phase diet of broiler chicken. Trop. J. Nat. Prod. Res., 4(12), pp. 1096-1100. DOI: https://doi.org/10.26538/tjnpr/v4i12.11
Lokapirnasari, W.P., Pribadi, T.B., Al Arif, A., Soeharsono, S., Hidanah, S., Harijani, N., Najwan, R., Huda, K., Wardhani, H.C.P., Rahman, N.F.N., and Yulianto, A.B., 2019. Potency of probiotics Bifidobacterium spp. and Lactobacillus casei to improve growth performance and business analysis in organic laying hens. Veterinary World, 12(6), pp.860. DOI: https://doi.org/10.14202/vetworld.2019.860-867
Lokapirnasari, W.P., Sahidu, A.M., Maslachah, L., Sabdoningrum, E.K., and Yulianto, A.B. 2020b. Effect of Lactobacillus casei and Lactobacillus acidophilus in laying hens challenged by Escherichia coli infection. Sains Malaysiana, 49(6), pp.1237-1244. DOI: https://doi.org/10.17576/jsm-2020-4906-03
Lu, W.J., Yang, Q., Yang, L., Lee, D., D’Alessio, D., and Tso, P., 2012. Chylomicron formation and secretion is required for lipid-stimulated release of incretins GLP-1 and GIP. Lipids, 47, pp.571-580. DOI: https://doi.org/10.1007/s11745-011-3650-1
Markowiak-Kopec, P., and Slizewska, K., 2020. The effect of probiotics on the production of short-chain fatty acids by human intestinal microbiome. Nutrients, 12, pp.1107. DOI: https://doi.org/10.3390/nu12041107
Marques, L.R., Diniz, T.A., Antunes, B.M., Rossi, F.E., Caperuto, E.C., Lira, F.S., and Gonçalves, D.C., 2018. Reverse cholesterol transport: molecular mechanisms and the non-medical approach to enhance HDL cholesterol. Front Physiol., 9, pp.526. DOI: https://doi.org/10.3389/fphys.2018.00526
Moore, K.J., Sheedy, F.J., and Fisher, E.A., 2013. Macrophages in atherosclerosis: a dynamic balance. Nature Reviews Immunology, 13(10), pp.709-721. DOI: https://doi.org/10.1038/nri3520
Mushawwir, A., and Latipuddin, D., 2013. Biologi Sintesis Telur, perspektif Fisologi, Biokimia dan Molekuler Produksi Telur. Penerbit Graha Ilmu, Yogyakarta.
Oku, H., Toda, T., Nagata, J., Ishikawa, M., Neyazaki, K., Shinjyo, C., and Chinen, I., 1997. Apolipoprotein A-1 of Japanese quail: cDNA sequence and modulation of tissue expression by cholesterol feeding. Biosci. Biotechnol. Biochem., 61(2), pp.286-290. DOI: https://doi.org/10.1271/bbb.61.286
Pato, U., Yusuf, Y., Fitriani, S., Yeni, R., Fadillah, F., and Husnaini, L., 2021. Optimization of the Growth of Pediococcus pentosaceus Strain 2397 in inhibiting Pathogenic Listeria monocytogenes. IOP Conference Series: Earth and Environmental Science, 757(1): 012056. IOP Publishing. DOI: https://doi.org/10.1088/1755-1315/757/1/012056
Pearlin, B.V., Muthuvel, S., Govidasamy, P., Villavan, M., Alagawany, M., Ragab Farag, M., Dhama, K., and Gopi, M. 2020. Role of acidifiers in livestock nutrition and health: A review. J. Anim. Physiol. Anim. Nutr., 104(2), pp.558-569. DOI: https://doi.org/10.1111/jpn.13282
Popeijus, H.E., Zwaan, W., Tayyeb, J.Z., and Plat, J., 2021. Potential contribution of short chain fatty acids to hepatic apolipoprotein AI production. Int. J. Mol. Sci., 22(11), pp.5986. DOI: https://doi.org/10.3390/ijms22115986
Röhrl, C., and Stangl, H., 2013. HDL endocytosis and resecretion. BBA - Mol. Cell Biol. Lipids., 1831(11), pp.1626-1633. DOI: https://doi.org/10.1016/j.bbalip.2013.07.014
Sánchez, C., Neves, A.R., Cavalheiro, J., dos Santos, M.M., García-Quintáns, N., López, P., and Santos, H., 2008. Contribution of citrate metabolism to the growth of Lactococcus lactis CRL264 at low pH. Appl. Environ. Microbiol., 74(4), pp.1136-1144. DOI: https://doi.org/10.1128/AEM.01061-07
Speake, B.K., Murray, A.M., and Noble, R.C. 1998. Transport and transformations of yolk lipids during development of the avian embryo. Prog Lipid Res., 37(1), pp.1-32. DOI: https://doi.org/10.1016/S0163-7827(97)00012-X
Tayyeb, J.Z., Popeijus, H.E., Mensink, R.P., Konings, M.C., Mulders, K.H., and Plat, J., 2019. The effects of short‐chain fatty acids on the transcription and secretion of apolipoprotein A‐I in human hepatocytes in vitro. J. Cell. Biochem., 120(10), pp.17219-17227. DOI: https://doi.org/10.1002/jcb.28982
Thananimit, S., Pahumunto, N., and Teanpaisan, R., 2022. Characterization of short chain fatty acids produced by selected potential probiotic lactobacillus strains. Biomolecules, 12(12), pp.1829. DOI: https://doi.org/10.3390/biom12121829
Utomo, D.B. 1997. Physiological responses and mechanisms of yolk precursors and egg production in laying hens exposed to high ambient temperature. Annexe Thesis Digitisation Project 2018 Block 18.
Vieira, P.M., Vieira, A.V., Sanders, E.J., Steyrer, E., Nimpf, J., and Schneider, W.J., 1995. Chicken yolk contains bona fide high density lipoprotein particles. J. Lipid Res., 36(3), pp.601-610. DOI: https://doi.org/10.1016/S0022-2275(20)39894-1
Wangko, W.S. 2020. Aspek Fisiologik Short Chain Fatty Acid (SCFA). J. Health Scope, 2(1). DOI: https://doi.org/10.35790/msj.2.1.2020.31669
Wei, X., Bottoms, K.A., Stein, H.H., Blavi, L., Bradley, C.L., Bergstrom, J., Knapp, J., Story, R., Maxwell, C., Tsai, T., and Zhao, J. 2021. Dietary organic acids modulate gut microbiota and improve growth performance of nursery pigs. Microorganisms, 9(1), pp.110. DOI: https://doi.org/10.3390/microorganisms9010110
Xie, Z., He, W., Gobbi, A., Bertram, H.C., and Nielsen, D.S. 2024. The effect of in vitro simulated colonic pH gradients on microbial activity and metabolite production using common prebiotics as substrates. BMC Microbiology, 24(1), pp.83. DOI: https://doi.org/10.1186/s12866-024-03235-2
Yan, A., and Gotlieb, A.I. 2023. The microenvironment of the atheroma expresses phenotypes of plaque instability. Cardiovasc. Pathol., 67, p.107572. DOI: https://doi.org/10.1016/j.carpath.2023.107572
Yi, C., Sun, W., Ding, L., Yan, M., Sun, C., Qiu, C., Wang, D., and Wu, L., 2022. Short-chain fatty acids weaken ox-LDL-induced cell inflammatory injury by inhibiting the NLRP3/caspase-1 pathway and affecting cellular metabolism in THP-1 cells. Molecules, 27(24), pp.8801. DOI: https://doi.org/10.3390/molecules27248801
Yoshida, H., Quehenberger, O., Kondratenko, N., Green, S., and Steinberg, D., 1998. Minimally oxidized low-density lipoprotein increases expression of scavenger receptor A, CD36, and macrosialin in resident mouse peritoneal macrophages. Arterioscler. Thromb. Vasc. Biol., 18(5), pp.794-802. DOI: https://doi.org/10.1161/01.ATV.18.5.794
Yulianto, A.B., Al Arif, A., and Lokapirnasari, W.P. 2021a. The potency of Bifidobacterium spp. as an alternative to antibiotic growth promoters on feed conversion ratio, feed efficiency, and nutrient intake in laying hens. J. Southwest Jiaotong University, 56(2), pp.281-290 DOI: https://doi.org/10.35741/issn.0258-2724.56.2.23
Yulianto, A.B., Lokapirnasari, W.P., Najwan, R., Wardhani, H.C.P., Rahman, N.F.N., Huda, K., and Ulfah, N., 2020. Influence of Lactobacillus casei WB 315 and crude fish oil (CFO) on growth performance, EPA, DHA, HDL, LDL, cholesterol of meat broiler chickens. Iranian J. Microbiol., 12(2), pp.148. DOI: https://doi.org/10.18502/ijm.v12i2.2620
Yulianto, A.B., Suwanti, L.T., Widiyatno, T.V., Suwarno, S., Yunus, M., Tyasningsih, W., Hidanah, S., Sjofjan, O., and Lokapirnasari, W.P., 2021b. Probiotic Pediococcus pentosaceus ABY 118 to Modulation of ChIFN‐γ and ChIL‐10 in Broilers Infected by Eimeria tenella Oocyst. Vet. Med. Int., 2021(1), pp.1473208. DOI: https://doi.org/10.1155/2021/1473208
Zarina Aziz, S.C., Beena, V., and Philomina, P.T. 2012. Comparison of cholesterol content in chicken, duck and quail eggs. J. Vet. Anim. Sci., 43, pp.64-66.
Zhang, R., Li, X., Fan, C., and Ning, Z., 2022. Effects of lipoproteins on yolk microstructure in duck, quail, goose, pigeon, and chicken eggs. Food Sci, Technol., 42, e00222. DOI: https://doi.org/10.1590/fst.00222
Zhou, L., Li, C., Gao, L., and Wang, A. 2015. High-density lipoprotein synthesis and metabolism. Molec. Med. Rep., 12(3), pp.4015-4021. DOI: https://doi.org/10.3892/mmr.2015.3930
Copyright (c) 2025 Andreas Berny Yulianto, Koesnoto Supranianondo, Kartika Purnamasari

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Veterinary Medicine Journal by Unair is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
1. The Journal allows the author to hold the copyright of the article without restrictions.
2. The Journal allows the author(s) to retain publishing rights without restrictions
3. The legal formal aspect of journal publication accessibility refers to Creative Commons Attribution Share-Alike (CC BY-SA).