Government Strategies Using AI: A Case Study of Cultural Heritage Restoration (Soldier Photo Collection) for South Korea’s 70th Ceasefire Commemoration
Downloads
Latar belakang: Pelestarian dan restorasi warisan budaya sangat penting untuk menjaga narasi sejarah dan identitas budaya. Tujuan: Penelitian ini mengeksplorasi peran kecerdasan buatan (AI) dalam restorasi foto sejarah Korea Selatan, khususnya dari era Perang Korea, dengan fokus pada teknologi seperti Face Image Restoration (GFP-GAN) untuk mengonversi foto hitam-putih menjadi gambar berwarna beresolusi tinggi. Proyek ini, yang dilaksanakan oleh Universitas Sungkyunkwan dan Kementerian Patriot dan Veteran Korea Selatan, menyoroti dampak signifikan AI dalam pelestarian budaya. Peran pemerintah sangat vital dalam proyek ini, dari memilih foto bersejarah hingga memastikan akurasi historis dan penerapan teknologi yang canggih. Kerja sama antara pemerintah dan institusi akademis menunjukkan bagaimana dukungan pemerintah dapat mempercepat dan memperluas teknologi pelestarian budaya. Metode: Penelitian ini menggunakan metode penelitian kualitatif dengan pendekatan studi kasus dan tinjauan pustaka yang komprehensif dalam mengumpulkan data. Hasil: Hasil penelitian menunjukkan bahwa AI tidak hanya meningkatkan kualitas visual dan aksesibilitas gambar sejarah tetapi juga menghubungkan masa lalu dan masa kini secara lebih relevan. Studi ini menggarisbawahi potensi transformasional AI dalam pelestarian budaya dan menyerukan eksplorasi lebih lanjut tentang penerapannya dalam upaya global. Kesimpulan: Penelitian ini juga menekankan pentingnya kolaborasi lintas sektor antara pemerintah, akademisi, dan lembaga swasta untuk mencapai hasil restorasi yang signifikan dan bertahan lama.
Background: Preserving and restoring cultural heritage is crucial for maintaining historical narratives and cultural identity. Purpose: This study investigates the role of artificial intelligence (AI) in the restoration of historical photographs from South Korea, particularly those from the Korean War era. It focuses on technologies such as Face Image Restoration (GFP-GAN) to convert black-and-white photos into high-resolution, colorized images. The project, conducted in collaboration with Sungkyunkwan University and the South Korean Ministry of Patriots and Veterans Affairs, highlights the significant impact of AI on cultural preservation. The government's role is essential in this project, encompassing tasks from selecting historical photographs to ensuring historical accuracy and the application of advanced technology. The partnership between government bodies and academic institutions illustrates how government support can accelerate and expand the application of preservation technologies. Methods: This research employed a qualitative methodology, using a case study approach alongside a comprehensive literature review to gather essential data. Results: The findings demonstrate that AI not only enhances the visual quality and accessibility of historical images but also creates a more meaningful connection between past and present. This study underscores the transformative potential of AI in cultural preservation and calls for further exploration of its application in global preservation efforts. Conclusion: It also emphasizes the importance of cross-sector collaboration among government, academia, and private organizations to achieve significant and enduring results in heritage restoration.
Abate, D., Agapiou, A., Toumbas, K., Lampropoulos, A., Petrides, K., Pierdicca, R., Paolanti, M., Di Stefano, F., Felicetti, A., Malinverni, E. S., & Zingaretti, P., 2023. Artificial intelligence to fight illicit trafficking of cultural property. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences. XLVIII-M-2-2023, 3–10. https://doi.org/10.5194/isprs-archives-XLVIII-M-2-2023-3-2023
Asakura, T., 2016. Cultural Heritage in Korea – from a Japanese perspective. In: Matsuda A. & Mengoni L. (Ed.), Reconsidering Cultural Heritage in East Asia. Ubiquity Press, London, pp. 103–119. https://doi.org/10.5334/baz.f
Bluemke, E., Collins, T., Garfinkel, B., & Trask, A., 2023. Exploring the Relevance of Data Privacy-Enhancing Technologies for AI Governance Use Cases. arXiv preprint arXiv:2303.08956. https://doi.org/10.48550/arXiv.2303.08956
Bryson, J. J., 2012. Patiency is not a virtue: suggestions for co-constructing an ethical framework including intelligent artefacts. In AISB/IACAP World Congress 2012-The Machine Question: AI, Ethics and Moral Responsibility, Part of Alan Turing Year 2012 (pp. 73-77). Society for the Study of Artificial Intelligence and the Simulation of Behaviour.
Casasempere-Satorres, A., & Vercher-Ferrándiz, M. L., 2020. Bibliographic documentary analysis: Getting the most out of the literature review in qualitative research [Análisis documental bibliográfico: Obteniendo el máximo rendimiento a la revisión de la literatura en investigaciones cualitativas]. New Trends in Qualitative Research. 4, 247-257. https://doi.org/10.36367/ntqr.4.2020.247-257
Colley, S., 2015. Ethics and Digital Heritage. In: Ireland, T., Schofield, J. (Ed.), The Ethics of Cultural Heritage. Ethical Archaeologies: The Politics of Social Justice, vol 4. Springer, New York. https://doi.org/10.1007/978-1-4939-1649-8_2
de Vries, K. (2020). Case study methodology. In Kay, A. (Ed.), Critical qualitative health research. Routledge, London, pp. 41-52. https://doi.org/10.4324/9780429432774-2
Debout, C., 2016. Qualitative case study [L'étude de cas qualitative]. Soins. 61(806), 57-60. https://doi.org/10.1016/j.soin.2016.04.018
Fornaro, P., & Chiquet, V., 2020. Artificial Intelligence for content and context metadata retrieval in photographs and image groups. In Proc. IS&T Archiving 2020. pp. 79–82. https://doi.org/10.2352/issn.2168-3204.2020.1.0.79
Hortal, I. P., 2024. Artificial intelligence and other technologies as allies in the enjoyment of art and museums. European Public and Social Innovation Review. 9, 1-13. https://doi.org/10.31637/epsir-2024-438
Kang, S., Lee, GL., Hong, S., 2013. Preserving Cultural Heritage in Kindergartens in Korea. In: Clark Wortham, S. (Ed), Common Characteristics and Unique Qualities in Preschool Programs. Educating the Young Child, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4972-6_7
Khan, N. I., 2022. Case study as a method of qualitative research. In Information Resources Management Association. (Ed.), Research anthology on innovative research methodologies and utilization across multiple disciplines. IGI Global, Hershey, pp. 452-472. https://doi.org/10.4018/978-1-6684-3881-7.ch023
Kim, C., Han, M. H., & Kim, J. C., 2014. A study on needs of software development for Korean image restoration through cases of classical film restoration (고전영화복원 사례를 통한 한국형영상복원 소프트웨어 개발 필요성에 관한 연구). Journal of Korea Multimedia Society. 17(12), 1528–1536. https://doi.org/10.9717/kmms.2014.17.12.1528
Kohlbacher, F., 2006. The use of qualitative content analysis in case study research. Forum Qualitative Sozialforschung. 7(1). https://doi.org/10.17169/fqs-7.1.75
Kumar, P., & Gupta, V., 2023. Artwork restoration using paired image translation-based generative Adversarial Networks. ITM Web of Conferences. 54, 01013. https://doi.org/10.1051/itmconf/20235401013
Kumar, P., & Tiwari, S., 2024. Ink to Pixels: AI's Impact on Preserving History and Heritage - A Bibliometric Journey. In 2024 1st International Conference on Communications and Computer Science (InCCCS). Bangalore, India, pp. 1-6.
Lee, B. K., 2022. A combining AI algorithm for the restoration of damaged cultural properties. Webology. 19(1), 4384–4395. https://doi.org/10.14704/web/v19i1/web19288
Lee, H., & Lee, J., 2023. A study on the preservation situation and utilization plan of the ganghwa dondae (fortification): Focusing on city-designated cultural properties. The Hoseo Archaeological Society. 54, 214–243. https://doi.org/10.34268/hskk.2023.54.214
Lee, J. H., Kim, H. K., & Park, C. W., 2022. Studies on intelligent curation for the Korean traditional cultural heritage. In 2022 International Conference on Artificial Intelligence in Information and Communication (ICAIIC). Jeju Island, Korea, pp. 431-436. https://doi.org/10.1109/icaiic54071.2022.9722693
Li, P., 2024. The Mediating Effect of Artificial Intelligence on the Relationship Between Cultural Heritage Preservation and Opera Music: A Case Study of Shanxi Opera. Evolutionary Studies in Imaginative Culture. 249-267.
Li, Y., Meng, J., Yu, Y., Wang, C., & Guan, Z., 2022. Image restoration based on improved generative Adversarial Networks. In 2022 7th International Conference on Image, Vision and Computing (ICIVC). Xi’an, China, pp. 788-804. https://doi.org/10.1109/icivc55077.2022.9886285
Liu, L. F., Li, S., & Lai, S. N., 2019. Advance of neural network in degraded image restoration. Journal of Graphics, 40(2), 213-224.
Lor, P. J., & Britz, J. J., 2012. An ethical perspective on political-economic issues in the long-term preservation of digital heritage. Journal of the American Society for Information Science and Technology. 63(11), 2153–2164. https://doi.org/10.1002/asi.22725
Mittochi, E., & Jimu, J., 2023. AI based image restoration. International Journal of Advanced Research in Science, Communication and Technology. 3(5), 209–216. https://doi.org/10.48175/ijarsct-11632
Närvänen, E., Gummesson, E., & Kuusela, H., 2014. The collective consumption network. Managing Service Quality: An International Journal. 24(6), 545-564. https://doi.org/10.1108/MSQ-08-2013-0159
Pai, H. I., 2014. Monumentalizing the ruins of Korean antiquity: Early travel photography and itinerary of seoul’s heritage destinations. International Journal of Cultural Property. 21(3), 331–347. https://doi.org/10.1017/s0940739114000228
Pai, H. I., 2015. Gateway to korea: Colonialism, Nationalism, and reconstructing ruins as tourist landmarks. Journal of Indo-Pacific Archaeology. 35, 15. https://doi.org/10.7152/jipa.v35i0.14729
Pai, H. I., 2017. Archaeologizing “Korean Heritage”: Cultural Properties Management and state tourist development. In Habu, J., Lape, P., Olsen, J. (Ed.), Handbook of East and Southeast Asian Archaeology. Springer, New York, pp. 27–37. https://doi.org/10.1007/978-1-4939-6521-2_3
Pansoni, S., Tiribelli, S., Paolanti, M., Frontoni, E., & Giovanola, B., 2023. Design of an ethical framework for Artificial Intelligence in cultural heritage. In 2023 IEEE International Symposium on Ethics in Engineering, Science, and Technology (ETHICS). West Lafayette, Indiana, pp. 1-5. https://doi.org/10.1109/ethics57328.2023.10155020
Pavlidis, M., Mouratidis, H., Gonzalez-Perez, C., & Kalloniatis, C., 2016. Addressing privacy and trust issues in cultural heritage modelling. In Risks and Security of Internet and Systems: 10th International Conference (CRiSIS). Mytilene, Lesbos Island, pp. 3-16.
Sankar, B., Saravanan, M., Kumar, K., & Dubakka, S., 2023. Transforming pixels into a masterpiece: AI-powered art restoration using a novel distributed denoising CNN (DDCNN). In 2023 International Conference on Emerging Techniques in Computational Intelligence (ICETCI). Hyderabad, India, pp. 164-175. https://doi.org/10.1109/icetci58599.2023.10331299
Shyamala, B., Tukkoji, C., Nadhan, A. S., & Sara, D., 2021. Design a model of image restoration using AI in Digital Image Processing. Turkish Journal of Computer and Mathematics Education (TURCOMAT). 12(5), 862–865. https://doi.org/10.17762/turcomat.v12i5.1497
Sîntionean, C., 2023. South Korean heritage diplomacy sharing expertise on conservation with the world. Cultural Exchanges Between Korea and the West Artifacts and Intangible Heritage. https://doi.org/10.30687/978-88-6969-717-3/006
Son, C. M., 2023. Exploring the impact of cultural heritage on destination branding and tourist experiences: Perspective from South Korea. Journal of Hospitality and Tourism Management. 6(1), 1–10. https://doi.org/10.53819/81018102t4138
Tilagul, A., Nagashri, A., Harshitha D L, & Deepa, K. S., 2023. Image regeneration for Old damaged monument reel picture using deep learning. International Journal of Advanced Research in Science, Communication and Technology. 3(2), 203–207. https://doi.org/10.48175/ijarsct-9737
Volynets, V., 2023. The impact of artificial intelligence on Contemporary Art: Opportunities and challenges. Digital Platform: Information Technologies in Sociocultural Sphere. 6(1), 21–31. https://doi.org/10.31866/2617-796x.6.1.2023.283933
Wan, Z., Zhang, B., Chen, D., Zhang, P., Chen, D., Wen, F., & Liao, J., 2023. Old photo restoration via Deep Latent Space Translation. IEEE Transactions on Pattern Analysis and Machine Intelligence. 45(2), 2071–2087. https://doi.org/10.1109/tpami.2022.3163183
Yun, S. H., 2023. Photos of Korean War heroes to be restored by AI Technologies. 동아일보. The Dong-A Ilbo. https://www.donga.com/en/article/all/20230214/3958813/1
Zhang, B., Cheng, P., Deng, L., Romainoor, N. H., Han, J., Luo, G., & Gao, T., 2023. Can AI-generated art stimulate the sustainability of intangible cultural heritage? A quantitative research on cultural and creative products of New Year Prints generated by AI. Heliyon, 9(10).
Copyright (c) 2024 Monica Maharani, Tamara Adriana Salim
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
- The journal allows the author to hold the copyright of the article without restrictions.
- The journal allows the author(s) to retain publishing rights without restrictions.
- The legal formal aspect of journal publication accessibility refers to the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License for the published articles, legal formal aspect of journal publication accessibility refers to Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (CC BY-NC-SA).