EFFECT OF PLATELET RICH PLASMA (PRP) TO AUTOGENOUS BONE GRAFT

Iswinaro Doso Saputro, Magda Rosalina Hutagalung, Siti Isya Wahdini
Department of Plastic Reconstructive and Aesthetic Surgery, Faculty of Medicine, Universitas Airlangga, Dr. Soetomo Hospital, Surabaya, Indonesia

ABSTRACT

Bone graft use in maxillofacial surgery is currently developing, though some problems still persist. One of promising solutions to the problems is application of platelet rich plasma which may accelerate soft tissue healing and bone formation. This study aims to provide basic understanding to the development of PRP application in bone healing where bone graft is applied on human maxillae. Bone defects were made on maxillae of albino rabbits, with an application of bone graft in control group and bone graft plus PRP in treatment group. Histopathological analysis was performed in both groups to assess osteoblast density and collagen tissue area. On day 21st, more osteoblast density and collagen area in treatment group are significantly observed (p<0.05, 95% confidence interval). Observations were made on hard callus formation. In conclusions, platelet rich plasma may increase density of osteoblast in rabbit maxillary bone graft

Keywords: Platelet rich plasma, bone graft, bone healing

INTRODUCTION

Bone graft in craniomaxillofacial surgery is developing extreme and radical technique (Polley et al 1994). One of the technique is bone graft in bone defect due to trauma, cleft lip and palate, and facial cleft. In Dr. Soetomo District Hospital, there were 53 trauma patient who were reconstructed using bone graft from iliac bone or ribs during 2012 - 2013. Problem arose were bone graft absorption, surgical site infection, and chronic pain in donor site.

In actively growing bone, osteoblast, osteocyte, osteoclast, and osteoprogenitor cells continue to perform (Kalfas 2001) (Fawcett 2002) (Buckwalter 1999). About 98% of bone matrix is collagenous tissue, while the rest are glycosaminoglycans and proteoglycans (Lawrence et al 2000). Collagen is protein in extracellular matrix which is composed by three poly-peptide chain forming triple helix. Type 1 collagen is the most abundant and almost seen in every connective tissue (Vigué-Carrin et al 2006).

Bone metabolism is affected by local and hormonal factors. Parathyroid hormone triggers cytoskeletal and osteoblast changes. Vitamin D stimulates bond between calcium ion and protein then facilitates active calcium transport and calcitonin which in turn prohibit calcium metabolism activity. Local activities that influence bone metabolism are protein clusters, growth factor, platelet release, macrophage, and fibroblast. Proteins that induce bone healing are bone morphogenic protein, insulin-like growth factors, transforming growth factors, platelet-derived growth factor dan fibroblast growth factor (Kalfas 2001). Generally, there are four bone healing phase: inflammation, soft callus forming, hard callus forming, and reshaping. There are two kings of bone healing in craniomaxillofacial region: primary healing
or direct healing and secondary healing or healing by callus (Simpson 1995).

Bone graft is simply a process of removing bone tissue and replace it in another region. Bone graft, may be autograft, allograft, and xenograft, can be used to correct deformities due to surgery, accident, or diseases (Darwono 2001) (Ferdiansyah 2001). Autograft is more preferable for its low bone graft absorption (Ferdiansyah 2001). Meanwhile, autologous bone graft is regarded as gold standard for its low immunological rejection properties, greater osteoconduction, easy to apply, and less expensive (Roffi 2013).

Non vascularized bone graft will not be viable. Osteoclast has morphogenic protein to trigger osteoinduction and osteoconduction. These will eventually trigger neovascularization to stimulate granulation in the bone where mesenchimal cells (precursor of osteoblasts and osteoclasts) reside. Granulation tissue covers the graft while osteoclasts in granulation tissue remove non-viable graft so that cancellous bone may be replaced by new bone tissue (Simpson 1995).

Back in 1915, Albee described important basic principle to achieve success in various bone graft surgery still in use today (Polley et al 1994). Those principles are adequate vascularizaton of donor site, good fixation of bone graft, optimal biomechanical stimulation to bone graft, and careful tissue harvest intraoperatively. Platelet rich plasma in bone graft is expected to accelerate soft tissue and bone healing. Degranulation from alpha granule in platelet activates secretion of growth factors, especially PDGF and TGF-β. PDGF, TGF-β, VEGF, three isomers of PDGF and EGF accelerate chemotactic, mitogenesis, angiogenesis, and collagen matrix synthesis (Ouyang & Qiao 2006) (Albanese 2013).

Platelet rich plasma contains various growth factor such as Platelet Derived Growth Factor (PDGF), Transforming Growth Factor–β (TGF-β), Vascular Endothelial Growth Factor (VEGF), Endothelial Growth Factor (EGF), IGFl, and ECGF. PDGF is mitogen which in turn becomes chemotactic agent for fibroblast and smooth muscle cells to stimulate angiogenesis and collagen synthesis. TGF-β is released from granule alfa platelet and regulates its product by autocrine means. It may inhibit bone resorption in bone graft while stimulates fibroblast proliferation and produces proteoglycan, collagen, and fibrin. This factor also stimulates accumulation of extracellular matrix and fibrosis. In vivo, PDGF dan TGF-β in PRP may enhance soft tissue and bone tissue healing. Degranulation from alpha granule in platelet activates secretion of growth factors, especially PDGF dan TGF-β. TGF-β, VEGF, three isomers of PDGF and EGF accelerate chemotactic, mitogenesis, angiogenesis, and collagen matrix synthesis (Ouyang & Qiao 2006) (Albanese 2013).

PRP may be applied for therapies of various disorders, including musculoskeletal, cartilage, bone, muscle, tendon, ligament regeneration and some procedures of augmentation to enhance healing in surgery with implant, even though report in this field is still minimal (Roffi 2013). PRP may also enhance periodontal cell function and osteoblasts, short term or long term through DNA synthesis and osteoblast migration (Creeper 2009).

Application of PRP may lower post surgical complication, and potentially stimulates regeneration in bone defect, gingiviva, and connective tissue damage. It also contains more natural growth factor so as to mimic in vivo circumstances (Lipross & Alini 2007). Gel of PRP was introduced initially as an alternative to fibrin glue in maxillofacial reconstructive surgery that needed bone graft.

The facts mentioned above posed a research opportunity and raised a question whether PRP may accelerate new bone formation in bone graft of maxillae as seen as osteoblast density and collagen density in bone matrix. The research was expected to provide basic understanding to the development of PRP application in bone healing where bone graft is applied on human maxillae. This in turn may change basic protocol of bone grafting in maxillae and may reduce complication rate and post operative cost.
MATERIALS AND METHODS

This is a quasi-experimental research with post test only design with control. Twelve 1 year-old albino male New Zealand rabbit (Oryctolagus cuniculus) were used in this research. All rabbits were 1-2 kilograms, kept in the same cage with same amount and kind of food. Room temperature was kept around 22 degree celsius by limiting sun shine access and ventilation.

After premedicated using atropin 0.02 mg/kgbw and acipromasin 0.1 mg/kgbw, ketamine 20-50 mg/kgbw was administered. Incisions were made intraorally to reach left and right maxillae. Six rabbits left maxillae in control group were drilled using no. 07 burr, less than 10,000 rpm while normal saline irrigated to get bone defect with 5 mm in diameter and 3 mm deep. The drilled bone was put again in the defect as bone graft. These procedures were repeated in right maxillae of the other six rabbits in treatment group. In treatment group, PRP was administered. Post operatively, all rabbits were given 60 mg/kgbw of paracetamol.

On the 21st day, pentobarbital 60-100 mg/kgbw was administered intraperitoneally between processus xyphoideus and tuberculum pubicum. Maxillae specimens were fixated in 10% formaline and sent to pathology laboratorium to be processed before histopathological reading. Osteoblast density was observed using hematoxylin-eosin staining while Masson’s trichrome staining was used to measure collagen tissue area.
On the day 21st (hard callus formation phase) in control group, cracks were observed. Osteoblasts were observed by microscope with high power field 400x magnification and were more numerous than those in control group. Collagen density was measured based on tissue area percentage by microscope with 40x magnification and more collagen density was also observed in treatment group than in control group.

Fig. 5. Histopathological observation, 400x magnification, haematoxylin-eosin staining. Arrows show osteoblast: A) Control group; B) Treatment group

Quantitative data was first analyzed using One-Sample Kolmogorov-Smirnov test to determine normal distribution. Data was further examined with independence sample T-test with 95% confidence interval. There was more osteoblasts on day 21st (hard callus formation phase) in the group of bone graft with PRP (treatment group) as shown in Fig. 6. In the same period, collagen density was higher in treatment group as shown in Fig. 7. Mean density of osteoblast and collagen tissue percentage are statistically significant (p<0.05, 95% confidence interval) between both groups as presented in Table 1.

Fig. 6. Osteoblast count in both groups reflects osteoblast density

Fig. 7. Collagen area in both groups

<table>
<thead>
<tr>
<th>Variables</th>
<th>Treatment Group</th>
<th>Control Group</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Osteoblasts (/field of view)</td>
<td>21.66±2.58</td>
<td>17.50±2.66</td>
<td>0.02</td>
</tr>
<tr>
<td>Collagen (/field of view)</td>
<td>51.66±9.83</td>
<td>38.33±9.30</td>
<td>0.03</td>
</tr>
</tbody>
</table>

DISCUSSION

In iliac bone graft with PRP to dog’s mandible showed an increase in osteoblast number significantly on first and second month but not on the third and sixth month (Gerart et al 2007). In earlier research, PRP and iliac bone graft in alveolar cleft showed significant increase in osteogenesis by 3D CT-scan observation after 5-6 months (Oyama 2004).
Another research proved that PRP in human alveolar mandible after bilateral third molar extraction showed more density radiographically on first, second, and third month (Liddelow & Klineberg 2011). Also, more dense callus formation radiographically and TGF-β1 increase were observed on fourth week after PRP administration of broken rat femoral bones.

This findings are also supported by previous research which concluded that mean platelet number in bone graft of human bone was around 111,000 – 523,000, whereas platelet concentration in PRP-enriched bone graft may increase to 595,000 – 1,100,000. This may enhance platelet ability to produce PDGF dan TGF-β. Both substance then activate angiogenesis and mitogenesis in marrow cell and perosteoblast, followed by stimulation of differentiation and deposition of osteoblast matrix protein. PRP may also enhance activity of alkaline phosphatase, a marker in bone formation (Marx 1999).

However, previous study once found that PRP application provide significant result. Human PRP which was mixed with bone matrix implanted in rats' gastrocnemius muscle for five days did not induce osteoinduction (Ranly 2007). Other previous study found that no significant effect was observed in rats' calvaria healing process on 4th and 8th week radiographically (Pryor 2005). Unsuccessfulness of both studies might be caused by non-autologous PRP or substandard PRP processing.

CONCLUSION

This research concludes that platelet rich plasma may increase density of osteoblast in rabbit maxillary bone graft. Collagen and osteoblast in early stage of hard callus forming were both affected by PRP and eventually trigger osteogenesis in rabbit maxillary bone graft.

REFERENCES

Darwono B. Pengalaman Graft Tulang di RSPAD Gatot Soebroto. In The 1st Indonesian Tissue Bank Scientific Meeting and Workshop on Biomaterial Application; 2001; Surabaya. p. 42a-42h.
Fawcett DW. A Textbook of Histology Jakarta: 2002, EGC.
Roffi A. Does PRP Enhance Bone Integration with Graft, Graft Substitutes, or Implants? A Systematic