Main Article Content

Abstract

Highlights:
1. Novel synthetic biopolymer hydrogels were successfully prepared from pristine poly(ethylene glycol) dimethacrylate (PEGDMA) and nanofibrillated cellulose (NFC) using the photopolymerization method.
2. PEGDMA-NFC biocomposite hydrogel can be developed as an affordable biomaterial for herniated nucleus pulposus substitute, with the potential to meet clinical application standards.



Abstract


Herniated nucleus pulposus develops when the intervertebral disc portudes through the annulus fibrosus due to the rupture of the annulus fibrosus or a decrease in proteoglycans. Hydrogel implant material can be injected into the disc space to restore disc thickness caused by disc degeneration with minimal invasiveness. This study aimed to characterize poly(ethylene glycol) dimethacrylate-nanofibrillated cellulose (PEGDMA-NFC) in vitro as a potential biomaterial for herniated nucleus pulposus substitute. This study utilized PEGDMA-NFC to treat first-degree herniated nucleus pulposus using the photopolymerization method. PEGDMA was selected because of its hydrophilic ability to produce hydrogel. The addition of NFC to the PEGDMA precursor was expected to show mechanical properties as a hydrogel bio composite candidate. The characterization of PEGDMA-NFC was conducted using three tests: Fourier-transform infrared spectroscopy (FTIR), viscosity assessment, and an in vitro injection testing model. The normal distribution of the data was analyzed using the Kolmogorov-Smirnov test, while the homogeneity was assessed using Levene's test. Homogenous and normally distributed data were analyzed using a one-way analysis of variance (ANOVA) with a p-value of <0.05. The explored concentrations of PEGDMA-NFC included a ratio of 1:0 for the control samples and ratios of 1:0.5 (K1), 1:0.75 (K2), and 1:1 (K3) for the experimental samples. The FTIR analysis revealed the presence of various functional groups in PEGDMA-NFC, indicating its potential classification as a hydrogel biomaterial. The characterization data showed that the K3 sample yielded the most favourable outcome with a viscosity value of 74.67 dPa·s. From the in vitro injection testing result, the addition of NFC demonstrated that the hydrogel would not rupture when released from the mold. The hydrogel could be injected with an 18 gauge needle. The statistical analysis results showed a significant difference among the samples (p<0.05). This study concludes that the PEGDMA-NFC hydrogel biocomposite can be effectively applied in herniated nucleus pulposus cases.

Keywords

ilness biomaterial substitute hydrogel PEGDMA NFC

Article Details

Author Biography

Prihartini Widiyanti, Biomedical Engineering Study Program, Department of Physics, Faculty of Science and Technology, Universitas Airlangga, Surabaya, Indonesia

http://biomaterial.or.id/?page_id=33

How to Cite
Prihartini Widiyanti, Yurituna Firda, Aminatun, & Herry Wibowo. (2024). In Vitro Characterization of Poly(Ethylene Glycol) Dimethacrylate-Nanofibrillated Cellulose as an Injectable Biomaterial for Herniated Nucleus Pulposus Substitute. Folia Medica Indonesiana, 60(1), 54–60. https://doi.org/10.20473/fmi.v60i1.50084

References

  1. Aichmair A, Du J, Shue J, et al (2014). Microdiscectomy for the treatment of lumbar disc herniation: An evaluation of reoperations and long-term outcomes. Evidence-Based Spine-Care Journal 05, 77–86. doi: 10.1055/s-0034-1386750.
  2. Aristri MA, Lubis MAR, Iswanto AH, et al (2021). Bio-based polyurethane resins derived from tannin: Source, synthesis, characterisation, and application. Forests 12, 1516. doi: 10.3390/f12111 516.
  3. Atikah MSN, Ilyas RA, Sapuan SM, et al (2019). Degradation and physical properties of sugar palm starch/sugar palm nanofibrillated cellulose bionanocomposite. Polimery 64, 680–689. doi: 10.14314/polimery.2019.10.5.
  4. Baker MI, Walsh SP, Schwartz Z, et al (2012). A review of polyvinyl alcohol and its uses in cartilage and orthopedic applications. Journal of Biomedical Materials Research Part B: Applied Biomaterials 100B, 1451–1457. doi: 10.1002/jbm. b.32694.
  5. Benhamou K, Dufresne A, Magnin A, et al (2014). Control of size and viscoelastic properties of nanofibrillated cellulose from palm tree by varying the TEMPO-mediated oxidation time. Carbohy drate Polymers 99, 74–83. doi: 10.1016/j.carbpol. 2013.08.032.
  6. Burke G, Barron V, Geever T, et al (2019). Evaluation of the materials properties, stability and cell response of a range of PEGDMA hydrogels for tissue engineering applications. Journal of the Mechanical Behavior of Biomedical Materials 99, 1–10. doi: 10.1016/j.jmbbm.2019. 07.003.
  7. Campbell D (2013). Injectable biomimetic hydrogels for soft tissue repair. In Biomimetic Biomaterials, 276–300. Elsevier. Available at: https://linkinghub.elsevier.com/retrieve/pii/B9780857094162500100.
  8. Chamradová I, Vojtová L, Michlovská L, et al (2012). Rheological properties of functionalised thermosensitive copolymers for injectable applications in medicine. Chemical Papers. doi: 10.2478/s11696-012-0210-y.
  9. Chan SCW, Bürki A, Bonél HM, et al (2013). Papain-induced in vitro disc degeneration model for the study of injectable nucleus pulposus therapy. The Spine Journal 13, 273–283. doi: 10.1016/j.spinee.2012.12.007.
  10. Cortes DH, Jacobs NT, DeLucca JF, et al (2014). Elastic, permeability and swelling properties of human intervertebral disc tissues: A benchmark for tissue engineering. Journal of Biomechanics 47, 2088–2094. doi: 10.1016/j.jbiomech.2013.12. 021.
  11. Cramer GD (2014). General characteristics of the spine. In Clinical Anatomy of the Spine, Spinal Cord, and Ans, 15–64. Elsevier. Available at: https://linkinghub.elsevier.com/retrieve/pii/B9780323079549000025.
  12. Culbert MP, Warren JP, Dixon AR, et al (2022). Evaluation of injectable nucleus augmentation materials for the treatment of intervertebral disc degeneration. Biomaterials Science 10, 874–891. doi: 10.1039/D1BM01589C.
  13. DiStefano TJ, Shmukler JO, Danias G, et al (2020). Development of a two-part biomaterial adhesive strategy for annulus fibrosus repair and ex vivo evaluation of implant herniation risk. Biomaterials 258, 120309. doi: 10.1016/j.biomaterials.2020.12 0309.
  14. Doench I, Torres-Ramos M, Montembault A, et al (2018). Injectable and gellable chitosan formulations filled with cellulose nanofibers for intervertebral disc tissue engineering. Polymers (Basel) 10, 1202. doi: 10.3390/polym10111202.
  15. Frith JE, Cameron AR, Menzies DJ, et al (2013). An injectable hydrogel incorporating mesenchymal precursor cells and pentosan polysulphate for intervertebral disc regeneration. Biomaterials 34, 9430–9440. doi: 10.1016/j.biomaterials.2013.08. 072.
  16. Hola E, Morlet-Savary F, Lalevée J, et al (2023). Photoinitiator or photosensitizer? Dual behaviour of m-terphenyls in photopolymerization processes. European Polymer Journal 189, 111971. doi: 10.1016/j.eurpolymj.2023.111971.
  17. IBM Corp (2012). IBM SPSS Statistics for Windows, Version 21.0. Armonk, NY: IBM Corp. Available at: https://www.ibm.com/id-id/products /spss-statistics.
  18. Joshi A, Fussell G, Thomas J, et al (2006). Functional compressive mechanics of a PVA/PVP nucleus pulposus replacement. Biomaterials 27, 176–184. doi: 10.1016/j.biomaterials.2005.06. 003.
  19. Karami P, Wyss CS, Khoushabi A, et al (2018). Composite double-network hydrogels to improve adhesion on biological surfaces. ACS Applied Materials & Interfaces 10, 38692-38699. doi: 10.1021/acsami.8b10735.
  20. Kim TK (2017). Understanding one-way ANOVA using conceptual figures. Korean Journal of Anesthesiology 70, 22. doi: 10.4097/kjae.2017. 70.1.22.
  21. de Lamo-Rovira J, Cebrián-Parra JL, Francés-Borrego A, et al (2008). Treatment of vertebral fractures by kyphoplasty. Revista Española de Cirugí­a Ortopédica y Traumatologí­a (English Edition) 52, 15–20. doi: 10.1016/S1988-8856(08) 70063-4.
  22. Liu W, Zhan J, Su Y, et al (2014). Injectable hydrogel incorporating with nanoyarn for bone regeneration. Journal of Biomaterials Science, Polymer Edition 25, 168–180. doi: 10.1080/09205063.2013.848326.
  23. Molladavoodi S, McMorran J, Gregory D (2020). Mechanobiology of annulus fibrosus and nucleus pulposus cells in intervertebral discs. Cell and Tissue Research 379, 429–444. doi: 10.1007/s00441-019-03136-1.
  24. Nicol E (2021). Photopolymerized porous hydrogels. Biomacromolecules 22, 1325–1345. doi: 10.1021/acs.biomac.0c01671.
  25. Purnamasari H, Gunarso U, Rujito L (2010). Overweight as a risk factor for low back pain in Neurological Clinic Patients at Prof. Hospital. Dr. Margono Soekarjo Purwokerto. Mandala of Health 4, 26–32. Available at: https://fmipa.umri. ac.id/wp-content/uploads/2016/06/NADYA-PUT RI-OVERWEIGHT-DG-LBP.pdf.
  26. Ren X, Liu H, Hui S, et al (2023). Forecast of pain degree of lumbar disc herniation based on back propagation neural network. Open Life Sciences. doi: 10.1515/biol-2022-0673.
  27. Schmocker A, Khoushabi A, Frauchiger DA, et al (2016). A photopolymerized composite hydrogel and surgical implanting tool for a nucleus pulposus replacement. Biomaterials 88, 110–119. doi: 10.1016/j.biomaterials.2016.02.015.
  28. Schmocker A, Khoushabi A, Schizas C, et al (2015). Miniature probe for the delivery and monitoring of a photopolymerizable material. Journal of Bio medical Optics 20, 127001. doi: 10.1117/1.JBO. 20.12.127001.
  29. Sivashanmugam A, Arun Kumar R, Vishnu Priya M, et al (2015). An overview of injectable polymeric hydrogels for tissue engineering. European Polymer Journal 72, 543–565. doi: 10.1016/j.eurpolymj.2015.05.014.
  30. Wang W, Liang T, Bai H, et al (2018). All cellulose composites based on cellulose diacetate and nanofibrillated cellulose prepared by alkali treatment. Carbohydrate Polymers 179, 297-304. doi: 10.1016/j.carbpol.2017.09.098.
  31. Widiyanti P, Amali MA, Aminatun (2020). Poly(ethylene glycol)dimethacrylate – nanofibrill ated cellulose bionanocomposites as injectable hydrogel for therapy of herniated nucleus pulposus patients. Journal of Materials Research and Technology 9, 12716-12722. doi: 10.1016/j.jmrt. 2020.08.091.
  32. Zeng Z, Mo X, He C, et al (2016). An in situ forming tissue adhesive based on poly(ethylene glycol)-dimethacrylate and thiolated chitosan through the Michael reaction. Journal of Materials Chemistry B 4, 5585–5592. doi: 10.1039/C6TB01475E.