Main Article Content

Abstract

Highlights:
1. By investigating knockdown-resistance (kdr) mutations associated with insecticide resistance, this research addresses a critical gap in understanding how these mutations may affect vector control strategies on Mengare Island, Gresik, Indonesia.
2. This study provides essential data on the current status of dengue virus serotypes and resistance mutations in mosquito populations across the region, guiding local health authorities in developing targeted vector control strategies.


Abstract
Dengue fever, caused by the dengue virus (DENV), poses a significant public health challenge, particularly in tropical regions. This study aimed to detect flavivirus presence, DENV serotypes, and knockdown-resistance (kdr) mutations in mosquito samples collected from Mengare Island, Gresik, Indonesia. A cross-sectional experimental design was employed, utilizing reverse transcription polymerase chain reaction (RT-PCR) for flavivirus detection and serotyping, as well as for identifying kdr mutations. Ribonucleic acid (RNA) extraction was performed using the Quick-RNA™ Miniprep Plus Kit (Zymo Research, Irvine, CA, USA), followed by RT-PCR with specific primers for DENV serotypes 1–4 and kdr mutations (V1016G and F1534C). Six adult female Aedes albopictus mosquitoes were analyzed in this study. The results revealed no evidence of flavivirus infection or DENV serotypes in the mosquito samples, as no complementary deoxyribonucleic acid (cDNA) bands corresponding to expected base pair sizes were observed on the agarose gels. Similarly, the analysis of kdr mutations showed that all samples were homozygous wildtype, with no mutations detected at the V1016G or F1534C loci. In conclusion, these findings suggest the absence of active dengue virus transmission or notable insecticide resistance in the studied mosquito population from Mengare Island. This study highlights the importance of continuous monitoring of flavivirus presence and resistance mutations. The variability in kdr mutation frequencies across regions underscores the need for sustained surveillance and effective control measures to mitigate potential outbreaks in high-risk areas such as Mengare Island.

Keywords

Flavivirus dengue virus kdr rt-pcr

Article Details

How to Cite
Tasya Amalia Dwiyanti, Teguh Hari Sucipto, Khoirunnisa Suhandarini, Azizia Kanya Fathiarachman, Nastiti, H. P. ., Anika Rahma Putri, Shifa Fauziyah, Prihartini Widiyanti, Hariyono, & Rehman, S. (2025). Detection of Serotypes and Knockdown-resistance Mutations in Dengue and Other Flavivirus Samples Collected from Mengare Island, East Java, Indonesia. Folia Medica Indonesiana, 61(1). Retrieved from https://e-journal.unair.ac.id/FMI/article/view/69008

References

  1. Central Statistics Agency (2024). BPS Kabupaten Gresik. Available at: https://gresikkab.bps.go.id/.
  2. Chen H, Li K, Wang X, Yang X, Lin Y, Cai F, Zhong W, Lin C, Lin Z, Ma Y (2016). First identification of kdr allele F1534S in VGSC gene and its association with resistance to pyrethroid insecticides in Aedes albopictus populations from Haikou City, Hainan Island, China. Infect Dis Poverty 5(1), pp 31. doi: 10.1186/s40249-016-0125-x.
  3. Dhewantara P, Riandi M, Wahono T, Mujiyanto M, Hidayat S (2020). Geographical and temporal dynamics of dengue fever in Java island, Indonesia (2007–2018): Evidence base to guide effective interventions. International Journal of Infectious Diseases 101, 346. doi: 10.1016/j.ijid.2020.09.909.
  4. Djiappi-Tchamen B, Nana-Ndjangwo MS, Mavridis K, Talipouo A, Nchoutpouen E, Makoudjou I, Bamou R, Mayi AMP, Awono-Ambene P, Tchuinkam T, Vontas J (2021). Analyses of insecticide resistance genes in Aedes aegypti and Aedes albopictus mosquito populations from Cameroon. Genes (Basel) 12(6), pp 828. doi: 10.3390/genes12060828.
  5. El-Kady AM, Osman HA, Alemam MF, Marghani D, Shanawaz M, Wakid MH, Al-Megrin WAI, Elshabrawy H, Abdella OH, Allemailem KS, Almatroudi A, EL-Amir MI (2022). Circulation of dengue virus serotype 2 in humans and mosquitoes during an outbreak in El Quseir City, Egypt. Infection and Drug Resistance 15, pp 2713–2721. doi: 10.2147/IDR.S360675.
  6. Enayati A, Valadan R, Bagherzadeh M, Cheraghpour M, Nikookar SH, Fazeli-Dinan M, Hosseini-Vasoukolaei N, Sahraei Rostami F, Shabani Kordshouli R, Raeisi A, Nikpour F, Mirolyaei A, Bagheri F, Sedaghat MM, Zaim M, Weetman D, Hemigway J (2024). Kdr genotyping and the first report of V410L and V1016I kdr mutations in voltage-gated sodium channel gene in Aedes aegypti (Diptera: Culicidae) from Iran. Parasites & Vectors 17(1), pp 34. doi: 10.1186/s13071-024-06123-w.
  7. Fadila SZ, Setiawan AR, Fauziyah S, Madaniyah S, Dewi EC, Naw SW, Cahyaningrum SE, Tukiran, Sucipto TH (2023). Detection of knockdown-resistance homozygous mutant C1534C using allele-specific polymerase chain reaction in Aedes albopictus and Aedes aegypti. Folia Medica Indonesiana 59(2), pp 123–129. doi: 10.20473/fmi.v59i2.39802.
  8. Fauziyah S, Subekti S, Utomo B, Sucipto TH, Adrianto H, Aryati A, Wardhani P, Soegijanto S (2021). Detection of knockdown-resistance mutations (V1016G and F1534C) in dengue vector from Urban Park, Surabaya, Indonesia. Journal of Tropical Biodiversity and Biotechnology 6(3), pp 65357. doi: 10.22146/jtbb.65357.
  9. Guarido MM, Govender K, Riddin MA, Schrama M, Gorsich EE, Brooke BD, Almeida APG, Venter M (2021). Detection of insect-specific flaviviruses in mosquitoes (Diptera: Culicidae) in northeastern regions of South Africa. Viruses 13(11), pp 2148. doi: 10.3390/v13112148.
  10. Hakim RN, Damayanti M, Fauziyah S, Sucipto TH (2024). Phylogenetic analysis of Dengue virus and insect-specific Flavivirus in Aedes aegypti from Gresik, Indonesia 2019. Biodiversitas Journal of Biological Diversity 25(6). doi: 10.13057/biodiv/d250602.
  11. Harapan H, Michie A, Mudatsir M, Sasmono RT, Imrie A (2019). Epidemiology of dengue hemorrhagic fever in Indonesia: Analysis of five decades data from the National Disease Surveillance. BMC Research Notes 12(1), pp 350. doi: 10.1186/s13104-019-4379-9.
  12. Indrayani E, Alam M, Fattah M (2020). Development strategy in mangrove tourism area exotic Mengare Gresik Regency East Java. In Proceedings of the Proceedings of the 13th International Interdisciplinary Studies Seminar, IISS 2019, 30-31 October 2019, Malang, Indonesia. EAI. Available at: http://eudl.eu/doi/10.4108/eai.23-10-2019.2293012.
  13. Ishak IH, Jaal Z, Ranson H, Wondji CS (2015). Contrasting patterns of insecticide resistance and knockdown resistance (kdr) in the dengue vectors Aedes aegypti and Aedes albopictus from Malaysia. Parasites & Vectors 8(1), 181. doi: 10.1186/s13071-015-0797-2.
  14. Kim J, Hwang ES (2020). Multiplexed diagnosis of four serotypes of dengue virus by real-time RT-PCR. BioChip Journal 14, 421–428. doi: 10.1007/s13206-020-4409-7.
  15. Krol E, Brzuska G, Szewczyk B (2019). Production and biomedical application of flavivirus-like particles. Trends in Biotechnology 37(11), pp 1202–1216. doi: 10.1016/j.tibtech.2019.03.013.
  16. Kushwah RBS, Kaur T, Dykes CL, Ravi Kumar H, Kapoor N, Singh OP (2020). A new knockdown resistance (kdr) mutation, F1534L, in the voltage-gated sodium channel of Aedes aegypti, co-occurring with F1534C, S989P and V1016G. Parasites & Vectors 13(1), 327. doi: 10.1186/s13071-020-04201-3.
  17. Li HH, Su MP, Wu SC, Tsou HH, Chang MC, Cheng YC, Tsai KN, Wang HW, Chen GH, Tang CK, Chung PJ, Tsai WT, Huang LR, Yueh YA, Chen HW, Pan CY, Akbari OS, Chang HH, Yu GY, Marshall JM, Chen CH (2023). Mechanical transmission of dengue virus by Aedes aegypti may influence disease transmission dynamics during outbreaks. eBioMedicine 94, pp 104723. doi: 10.1016/j.ebiom.2023.104723.
  18. Mashlawi AM, Al-Nazawi AM, Noureldin EM, Alqahtani H, Mahyoub JA, Saingamsook J, Debboun M, Kaddumukasa, Al-Mekhlafi HM, Walton C (2022). Molecular analysis of knockdown resistance (kdr) mutations in the voltage-gated sodium channel gene of Aedes aegypti populations from Saudi Arabia. Parasites & Vectors 15(1), 375. doi: 10.1186/s13071-022-05525-y.
  19. Ministry of Health of the Republic of Indonesia (2021). Indonesia health profile 2021. Ministry of Health of the Republic of Indonesia, Jakarta. Available at: https://kemkes.go.id/id/profil-kesehatan-indonesia-2021.
  20. Ministry of Health of the Republic of Indonesia (2022). Technical guidelines for fogging. Ministry of Health of the Republic of Indonesia, Jakarta.
  21. Mushtaq S, Tayyeb A, Firdaus-e-Bareen (2022). A comparison of total RNA extraction methods for RT-PCR based differential expression of genes from Trichoderma atrobrunneum. Journal of Microbiological Methods 200, pp 106535. doi: 10.1016/j.mimet.2022.106535.
  22. Satoto TBT, Satrisno H, Lazuardi L, Diptyanusa A, Purwaningsih, Rumbiwati, Kuswati (2019). Insecticide resistance in Aedes aegypti: An impact from human urbanization? ed. Samy AM. PLoS One 14(6), pp e0218079. doi: 10.1371/journal.pone.0218079.
  23. Souza BS, Lima LF, Galardo AKR, Corbel V, Lima JBP, Martins AJ (2023). Genetic structure and kdr mutations in Aedes aegypti populations along a road crossing the Amazon Forest in Amapá State, Brazil. Scientific Reports 13(1), pp 17167. doi: 10.1038/s41598-023-44430-x.
  24. Untoro YM, Sucipto TH, Setyawati H, Churrotin S, Amarullah IH, Wardhani P, Aryati A, Ueda S, Soegijanto S (2018). RNA isolation of dengue virus type 2 with different precipitation solvents: Methanol, chloroform, and 2-isopropanol. Jurnal Kimia Riset 3(1), pp 52. doi: 10.20473/jkr.v3i1.7455.
  25. Utama IMS, Lukman N, Sukmawati DD, Alisjahbana B, Alam A, Murniati D, Utama IMGDL, Puspitasari D, Kosasih H, Laksono I, Karyana M, Karyanti MR, Hapsari MMDEAH, Meutia N, Liang CJ, Wulan WN, Lau CY (2019). Dengue viral infection in Indonesia: Epidemiology, diagnostic challenges, and mutations from an observational cohort study ed. Messer WB. PLOS Neglected Tropical Diseases 13(10), pp e0007785. doi: 10.1371/journal.pntd.0007785.
  26. Wardhani P, Aryati A, Yohan B, Trimarsanto H, Setianingsih TY, Puspitasari D, Arfijanto MV, Bramantono B, Suharto S, Sasmono RT (2017). Clinical and virological characteristics of dengue in Surabaya, Indonesia ed. Munderloh UG. PLoS One 12(6), pp e0178443. doi: 10.1371/journal.pone.0178443.
  27. Wellehan JFX, Lierz JM, Phalen D, Raidal S, Styles DK, Crosta L, Melillo A, Schnitzer P, Schnitzer P, Lennox A, Lumejj JT (2016). Infectious disease. In Current Therapy in Avian Medicine and Surgery, pp. 22–106. Elsevier. Available at: https://linkinghub.elsevier.com/ret rieve/pii/B9781455746712000112.
  28. World Health Organization (2024). Dengue and severe dengue. WHO. Available at: https://www.who.int/news-room/fact-sheets/de tail/dengue-and-severe-dengue.
  29. Wuliandari JR, Hoffmann AA, Tantowijoyo W, Endersby-Harshman NM (2020). Frequency of kdr mutations in the voltage-sensitive sodium channel (VSSC) gene in Aedes aegypti from Yogyakarta and implications for Wolbachia-infected mosquito trials. Parasites & Vectors 13(1), pp 429. doi: 10.1186/s13071-020-04304-x.
  30. Zhao M, Ran X, Xing D, Liao Y, Liu W, Bai Y, Zhang Q, Chen K, Liu L, Wu M, Ma Z, Gao J, Zhang H, Zhao T (2023). Evolution of knockdown resistance (kdr) mutations of Aedes aegypti and Aedes albopictus in Hainan Island and Leizhou Peninsula, China. Frontiers in Cellular and Infection Microbiology 13. doi: 10.3389/fcimb.2023.1265873.
  31. Zheng X, Zheng Z, Wu S, Wei Y, Luo L, Zhong D, Zhou G (2022). Spatial heterogeneity of knockdown resistance mutations in the dengue vector Aedes albopictus in Guangzhou, China. Parasites & Vectors 15(1), 156. doi: 10.1186/s13071-022-05241-7.
  32. Zuharah WF, Sufian M (2021). The discovery of a novel knockdown resistance (kdr) mutation A1007G on Aedes aegypti (Diptera: Culicidae) from Malaysia. Scientific Reports 11(1), 5180. doi: 10.1038/s41598-021-84669-w.

Most read articles by the same author(s)