Main Article Content

Abstract

Highlights:
1. As minocycline plays an important role in stroke microglia activation and iron chelation, it is important to further analyze its effects on stroke treatment.
2. This meta-analysis revealed a significant effect of minocycline therapy, as evidenced by improved functional outcomes and inhibited matrix metalloproteinase-9 (MMP-9) activity.


 


Abstract


Stroke is the most common and devastating cerebrovascular disease. Many neuroprotective medications, such as scale and minocycline, have been developed to help the nervous system recover or regenerate after a stroke. However, it remains unclear whether minocycline provides a beneficial effect on stroke. We conducted this systematic review and meta-analysis to synthesize the effects of minocycline in stroke treatment. The systematic review was registered in the International Prospective Register of Systematic Reviews (PROSPERO), with registration number CRD42023485168. The quality of the eligible studies was assessed using the Jadad scale. This systematic review included three ischemic stroke trials, seven intracerebral hemorrhage trials, and one study on acute stroke. There was a significant association between minocycline intervention and stroke severity according to the National Institute of Health Stroke Scale (NIHSS), with a pooled mean difference (MD) of -1.92, a 95% confidence interval (CI) of -3.39 to -0.45, and a value of p=0.01. In the subgroup of ischemic stroke, the modified Rankin Scale (mRS) was significantly lower in the minocycline treatment group compared to the control group (MD=-0.89, 95% CI=-1.54 to -0.25, p=0.007). Additionally, matrix metalloproteinase-9 (MMP-9) levels for the intracerebral hemorrhage subgroup were significantly lower in the minocycline treatment group compared to the control group (MD=-19.93, 95% CI=-36.9 to -2.96, p=0.02). The analysis revealed that minocycline intervention was not significantly associated with hematoma volume, mortality, or stroke recurrence. Our findings indicate that minocycline supplementation is a potential intervention strategy for treating ischemic stroke and intracerebral hemorrhage.

Keywords

Minocycline neuroprotective agent stroke good health and well-being

Article Details

How to Cite
Ayu Imamatun Nisa, Arlia Ayu Damayanti, Jeffri Nagasastra, Abdulloh Machin, Mohammad Fathul Qorib, Retnaningsih, & Baarid Luqman Hamidi. (2024). Effects of Minocycline as a Neuroprotective Agent for Stroke on Mmp-9 Levels, Functional Outcome, and Mortality. Folia Medica Indonesiana, 60(2), 167–181. https://doi.org/10.20473/fmi.v60i2.58931

References

  1. Amiri-Nikpour MR, Nazarbaghi S, Hamdi-Holasou M, et al (2015). An open-label evaluator-blinded clinical study of minocycline neuroprotection in ischemic stroke: Gender-dependent effect. Acta Neurologica Scandinavica 131, 45–50. doi: 10.1111/ane.12296.
  2. Bramer WM, De Jonge GB, Rethlefsen ML, et al (2018). A systematic approach to searching: An efficient and complete method to develop literature searches. Journal of the Medical Library Association. doi: 10.1161/STROKEAHA.117.019 860.
  3. Cao S, Hua Y, Keep RF, et al (2018). Minocycline effects on intracerebral hemorrhage-induced iron overload in aged rats. Stroke 49, 995–1002. doi: 10.1161/STROKEAHA.117.019860.
  4. Cao Y, Yue X, Jia M, et al (2023). Neuroinflammation and anti-inflammatory therapy for ischemic stroke. Heliyon 9, e17986. doi: 10.1016/j.heliyon.2023.e17986.
  5. Casy T, Grasseau A, Charras A, et al (2022). Assessing the robustness of clinical trials by estimating Jadad’s score using artificial intelligence approaches. Computers in Biology and Medicine 148, 105851. doi: 10.1016/j.compbiomed.2022.105851.
  6. Chang JJ, Kim‐Tenser M, Emanuel BA, et al (2017). Minocycline and matrix metalloproteinase inhibition in acute intracerebral hemorrhage: A pilot study. European Journal of Neurology 24, 1384–1391. doi: 10.1111/ene.13403.
  7. Chen W, Zhang Y, Zhai X, et al (2022). Microglial phagocytosis and regulatory mechanisms after stroke. Journal of Cerebral Blood Flow & Metabolism 42, 1579–1596. doi: 10.1177/0271678X221098841.
  8. Dai S, Hua Y, Keep RF, et al (2019). Minocycline attenuates brain injury and iron overload after intracerebral hemorrhage in aged female rats. Neurobiology of Disease 126, 76–84. doi: 10.1016/j.nbd.2018.06.001.
  9. Fouda AY, Newsome AS, Spellicy S, et al. (2017). Minocycline in acute cerebral hemorrhage. Stroke 48, 2885–2887. doi: 10.1161/STROKEAHA.117. 018658.
  10. Hurkacz M, Dobrek L, Wiela-Hojeńska A (2021). Antibiotics and the nervous system—which face of antibiotic therapy is real, Dr. Jekyll (Neurotoxicity) or Mr. Hyde (Neuroprotection)? Molecules 26, 7456. doi: 10.3390/molecules26247 456.
  11. Kohler E, Prentice DA, Bates TR, et al (2013). Intravenous minocycline in acute stroke. Stroke 44, 2493–9. doi: 10.1161/STROKEAHA.113.000 780.
  12. Lampl Y, Boaz M, Gilad R, et al (2007). Minocycline treatment in acute stroke. Neurology 69, 1404–1410. doi: 10.1212/01.wnl.0000277487. 04281.db.
  13. Li J, Chen S, Fan J, et al (2019). Minocycline attenuates experimental subarachnoid hemorrhage in rats. Open Life Sciences 14, 595–602. doi: 10.1515/biol-2019-0067.
  14. Lu Y, Zhou M, Li Y, et al (2021). Minocycline promotes functional recovery in ischemic stroke by modulating microglia polarization through STAT1/STAT6 pathways. Biochemical Pharma cology 186, 114464. doi: 10.1016/j.bcp.2021.11 4464.
  15. Mehta A, Mahale R, Buddaraju K, et al (2019). Efficacy of neuroprotective drugs in acute ischemic stroke: Is it helpful? Journal of Neurosciences in Rural Practice 10, 576–581. doi: 10.1055/s-0039-1700790.
  16. Modheji M, Olapour S, Khodayar MJ, et al (2016). Minocycline is more potent than Tetracycline and Doxycycline in inhibiting MMP-9 in vitro. Jundishapur Jundishapur Journal of Natural Pharmaceutical Products. doi: 10.17795/jjnpp-27377.
  17. Myers SJ, Agapova V, Patel SV, et al (2023). Acute minocycline treatment inhibits microglia activation, reduces infarct volume, and has domain-specific effects on post-ischemic stroke cognition in rats. Behavioural Brain Research 455, 114680. doi: 10.1016/j.bbr.2023.114680.
  18. Otxoa-de-Amezaga A, Miró-Mur F, Pedragosa J, et al. (2019). Microglial cell loss after ischemic stroke favors brain neutrophil accumulation. Acta Neuropathologica 137, 321–341. doi: 10.1007/s00401-018-1954-4.
  19. Pawletko K, Jędrzejowska-Szypułka H, Bogus K, et al (2023). After ischemic stroke, minocycline promotes a protective response in neurons via the RNA-binding protein HuR, with a positive impact on motor performance. International Journal of Molecular Sciences 24, 9446. doi: 10.3390/ijms24119446.
  20. Pu L, Wang L, Zhang R, et al (2023). Projected global trends in ischemic stroke incidence, deaths and disability-adjusted life years from 2020 to 2030. Stroke 54, 1330–1339. doi: 10.1161/STROKEAHA.122.040073.
  21. Qiao C, Liu Z, Qie S (2023). The implications of microglial regulation in neuroplasticity-dependent stroke recovery. Biomolecules 13, 571. doi: 10.3390/biom13030571.
  22. Rusu A, Buta EL (2021). The development of third-generation tetracycline antibiotics and new perspectives. Pharmaceutics 13, 2085. doi: 10.3390/pharmaceutics13122085.
  23. Saini V, Guada L, Yavagal DR (2021). Global epidemiology of stroke and access to acute ischemic stroke interventions. Neurology. doi: 10.1212/WNL.0000000000012781.
  24. Shamsaei G, Mohammadi P (2017). Effect of oral minocycline on clinical recovery process in patients with acute ischemic stroke: A randomized clinical trial. J Jundishapur Journal of Natural Pharmaceutical Products. doi: 10.5812/jjnpp.63 792.
  25. Singh R, Augustin SJ, Jane M, et al (2019). Does minocycline improve recovery after acute ischemic stroke? Journal of Stroke Medicine 2, 40–46. doi: 10.1177/2516608519856263.
  26. Sohrabi C, Franchi T, Mathew G, et al (2021). PRISMA 2020 statement: What’s new and the importance of reporting guidelines. International Journal of Surgery 88, 105918. doi: 10.1016/j.ijsu.2021.105918.
  27. Srivastava MP, Bhasin A, Bhatia R, et al (2012). Efficacy of minocycline in acute ischemic stroke: A single-blinded, placebo-controlled trial. Neurology India 60, 23. doi: 10.4103/0028-3886.93584.
  28. Strickland BA, Barisano G, Abedi A, et al (2022). Minocycline decreases blood-brain barrier permeability following aneurysmal subarachnoid hemorrhage: A randomized, double-blind, controlled trial. Journal of Neurosurgery 136, 1251–1259. doi: 10.3171/2021.6.JNS211270.
  29. Suárez-Rivero JM, López-Pérez J, Muela-Zarzuela I, et al (2023). Neurodegeneration, mitochondria, and antibiotics. Metabolites 13, 416. doi: 10.3390/metabo13030416.
  30. Switzer JA, Hess DC, Ergul A, et al (2011). Matrix metalloproteinase-9 in an exploratory trial of intravenous minocycline for acute ischemic stroke. Stroke 42, 2633–2635. doi: 10.1161/STROKEAHA.111.618215.
  31. Wang W, Liu X, Mao W, et al (2022a). Minocycline inhibits nerve cell apoptosis caused by intracerebral hemorrhage in young mice via TRAIL signaling pathway. Tropical Journal of Pharmaceutical Research 21, 521–527. doi: 10.4314/tjpr.v21i3.10.
  32. Wang Y, Leak RK, Cao G (2022b). Microglia-mediated neuroinflammation and neuroplasticity after stroke. Frontiers in Cellular Neuroscience. doi: 10.3389/fncel.2022.980722.
  33. Yew WP, Djukic ND, Jayaseelan JSP, et al (2019). Early treatment with minocycline following stroke in rats improves functional recovery and differentially modifies responses of peri-infarct microglia and astrocytes. Journal of Neuroinflammation 16, 6. doi: 10.1186/s12974-018-1379-y.
  34. Yrjänheikki J, Keinänen R, Pellikka M, et al (1998). Tetracyclines inhibit microglial activation and are neuroprotective in global brain ischemia. Proceedings of the National Academy of Sciences 95, 15769-15774. doi: 10.1073/pnas.95.26.15769.
  35. Zhang R, Yong VW, Xue M (2022). Revisiting minocycline in intracerebral hemorrhage: Mechanisms and clinical translation. Frontiers in Immunology. doi: 10.3389/fimmu.2022.844163.
  36. Zhao K, Wang P, Tang X, et al (2023). The mechanisms of minocycline in alleviating ischemic stroke damage and cerebral ischemia-reperfusion injury. European Journal of Pharmacology 955, 175903. doi: 10.1016/j.ejphar. 2023.175903.