The effect of alkaline heat treatment on titanium
Downloads
Background: In recent years, advancements in implant surface modification have garnered considerable interest within the field of biomedical engineering, particularly in dental and orthopaedic implants. High-rise surface modifications demonstrate significant promise in enhancing osseointegration, improving cellular adhesion, and accelerating the healing process. One notable technique, alkaline-heat treatment (AHT), has shown potential for enhancing both the mechanical and biological performance of titanium implants. Purpose: The objective of this review is to provide a comprehensive overview of the properties and outcomes associated with alkaline-heat treatment for titanium implants, with a specific focus on the potential benefits for dental applications. Review: Based on an analysis of 13 review articles, titanium implants treated with alkaline heat exhibit distinctive properties that enhance their biological efficacy. These include superior osseointegration, improved immunological responses, and heightened antibacterial potential. Conclusion: Alkaline-heat treatment significantly enhances titanium implants by creating a nano topography that fosters osseointegration, bolsters immune responses, and exhibits antibacterial effects. These characteristics position AHT as a promising solution for preventing peri-implantitis and facilitating implant healing.
Zhang Y, Fu S, Yang L, Qin G, Zhang E. A nano structured TiO2/CuO/Cu2O coating on Ti-Cu alloy with dual function of antibacterial ability and osteogenic activity. J Mater Sci Technol. 2022 Jan;97:201–12.
Thiebot N, Hamdani A, Blanchet F, Dame M, Tawfik S, Mbapou E, et al. Implant failure rate and the prevalence of
associated risk factors: a 6-year retrospective observational survey. J Oral Med Oral Surg. 2022 Apr 8;28(2):19.
Gao Q, Feng T, Huang D, Liu P, Lin P, Wu Y, et al. Antibacterial and hydroxyapatite-forming coating for biomedical implants based on polypeptide-functionalized titania nanospikes. Biomater Sci. 2020;8(1):278–89.
Silva IR da, Barreto AT da S, Seixas RS, Paes PNG, Lunz J do N, Thiré RM da SM, et al. Novel Strategy for Surface Modification of Titanium Implants towards the Improvement of Osseointegration Property and Antibiotic Local Delivery. Materials (Basel). 2023 Mar 29;16(7):2755.
Sasikumar Y, Indira K, Rajendran N. Surface Modification Methods for Titanium and Its Alloys and Their Corrosion Behavior in Biological Environment: A Review. J Bio- TriboCorrosion. 2019 Jun 8;5(2):36.
Kobatake R, Doi K, Oki Y, Makihara Y, Umehara H, Kubo T, et al. Comparative Study of Surface Modification Treatment for Porous Titanium. J Oral Maxillofac Res. 2020 Jun 30;11(2).
Kapoor N, Nagpal A, Verma R, Thakur J, Singla A. A review on surface treatment of titanium implant. IP Ann Prosthodont Restor Dent. 2020 Dec 28;6(4):194–200.
Hou C, An J, Zhao D, Ma X, Zhang W, Zhao W, et al. Surface Modification Techniques to Produce Micro/Nano-scale Topographies on Ti-Based Implant Surfaces for Improved Osseointegration. Front Bioeng Biotechnol. 2022 Mar 25;10:1–16.
Jandt KD, Watts DC. Nanotechnology in dentistry: Present and future perspectives on dental nanomaterials. Dent Mater. 2020 Nov;36(11):1365–78.
Souza JCM, Sordi MB, Kanazawa M, Ravindran S, Henriques B, Silva FS, et al. Nano-scale modification of titanium implant surfaces to enhance osseointegration. Acta Biomater. 2019 Aug;94:112–31.
Yılmaz GE, Göktürk I, Ovezova M, Yılmaz F, Kılıç S, Denizli A. Antimicrobial Nanomaterials: A Review. Hygiene. 2023 Jul 19;3(3):269–90.
Dakhale R, Paul P, Achanta A, Ahuja KP, Meshram M. Nanotechnology Innovations Transforming Oral Health Care and Dentistry: A Review. Cureus. 2023 Oct;15(10):e46423.
Yamada M, Kato E, Yamamoto A, Sakurai K. A titanium surface with nano-ordered spikes and pores enhances human dermal fibroblastic extracellular matrix production and integration of collagen fibers. Biomed Mater. 2016 Feb 2;11(1):015010.
Yamada M, Kimura T, Nakamura N, Watanabe J, Kartikasari N, He X, et al. Titanium Nanosurface with a Biomimetic Physical Microenvironment to Induce Endogenous Regeneration of the Periodontium. ACS Appl Mater Interfaces. 2022 Jun 22;14(24):27703–19.
Wang H, Xu Q, Hu H, Shi C, Lin Z, Jiang H, et al. The Fabrication and Function of Strontium-modified Hierarchical Micro/Nano Titanium Implant. Int J Nanomedicine. 2020;15:8983–98.
Kartikasari N, Yamada M, Watanabe J, Tiskratok W, He X, Kamano Y, et al. Titanium surface with nanospikes tunes macrophage polarization to produce inhibitory factors for osteoclastogenesis through nanotopographic cues. Acta Biomater. 2022 Jan 1;137:316–30.
Cooper LF, Shirazi S. Osseointegration—the biological reality of successful dental implant therapy: a narrative review. Front Oral Maxillofac Med. 2022 Dec;4:39–39.
Parithimarkalaignan S, Padmanabhan T V. Osseointegration: an update. J Indian Prosthodont Soc. 2013 Mar;13(1):2–6.
Akshaya S, Rowlo PK, Dukle A, Nathanael AJ. Antibacterial Coatings for Titanium Implants: Recent Trends and Future Perspectives. Antibiotics. 2022 Nov 29;11(12):1719.
He X, Yamada M, Watanabe J, Tiskratok W, Ishibashi M, Kitaura H, et al. Titanium nanotopography induces osteocyte lacunar canalicular networks to strengthen osseointegration. Acta Biomater. 2022 Oct 1;151:613–27.
Ciobanu G, Harja M. Bismuth-Doped Nanohydroxyapatite Coatings on Titanium Implants for Improved Radiopacity and Antimicrobial Activity. Nanomaterials. 2019 Nov 27;9(12):1696.
Kartikasari N, Yamada M, Watanabe J, Tiskratok W, He X, Egusa H. Titania nanospikes activate macrophage phagocytosis by ligand-independent contact stimulation. Sci Rep. 2022 Jul 18;12(1):12250.
Oliveira MG de, Radi PA, Reis DAP, Reis AG dos. Titanium Bioactive Surface Formation Via Alkali and Heat Treatments for Rapid Osseointegration. Mater Res. 2021;24(5):1–8.
Hatoko M, Komasa S, Zhang H, Sekino T, Okazaki J. UV Treatment Improves the Biocompatibility and Antibacterial Properties of Crystallized Nanostructured Titanium Surface. Int J Mol Sci. 2019 Nov 28;20(23):5991.
Ciobanu G, Harja M. Cerium-doped hydroxyapatite/collagen coatings on titanium for bone implants. Ceram Int. 2019 Feb;45(2):2852–7.
Zhang Y, Fu S, Yang L, Qin G, Zhang E. A nano-structured TiO2/CuO/Cu2O coating on Ti-Cu alloy with dual function of antibacterial ability and osteogenic activity. J Mater Sci Technol. 2022 Jan;97:201–12.
Thiebot N, Hamdani A, Blanchet F, Dame M, Tawfik S, Mbapou E, et al. Implant failure rate and the prevalence of associated risk factors: a 6-year retrospective observational survey. J Oral Med Oral Surg. 2022 Apr 8;28(2):19.
Gao Q, Feng T, Huang D, Liu P, Lin P, Wu Y, et al. Antibacterial and hydroxyapatite-forming coating for biomedical implants based on polypeptide-functionalized titania nanospikes. Biomater Sci. 2020;8(1):278–89.
Silva IR da, Barreto AT da S, Seixas RS, Paes PNG, Lunz J do N, Thiré RM da SM, et al. Novel Strategy for Surface Modification of Titanium Implants towards the Improvement of Osseointegration Property and Antibiotic Local Delivery. Materials (Basel). 2023 Mar 29;16(7):2755.
Sasikumar Y, Indira K, Rajendran N. Surface Modification Methods for Titanium and Its Alloys and Their Corrosion Behavior in Biological Environment: A Review. J Bio- Tribo-Corrosion. 2019 Jun 8;5(2):36.
Kobatake R, Doi K, Oki Y, Makihara Y, Umehara H, Kubo T, et al. Comparative Study of Surface Modification Treatment for Porous Titanium. J Oral Maxillofac Res. 2020 Jun 30;11(2).
Kapoor N, Nagpal A, Verma R, Thakur J, Singla A. A review on surface treatment of titanium implant. IP Ann Prosthodont Restor Dent. 2020 Dec 28;6(4):194–200.
Hou C, An J, Zhao D, Ma X, Zhang W, Zhao W, et al. Surface Modification Techniques to Produce Micro/Nano-scale Topographies on Ti-Based Implant Surfaces for Improved Osseointegration. Front Bioeng Biotechnol. 2022 Mar 25;10:1–16.
Jandt KD, Watts DC. Nanotechnology in dentistry: Present and future perspectives on dental nanomaterials. Dent Mater. 2020 Nov;36(11):1365–78.
Souza JCM, Sordi MB, Kanazawa M, Ravindran S, Henriques B, Silva FS, et al. Nano-scale modification of titanium implant surfaces to enhance osseointegration. Acta Biomater. 2019 Aug;94:112–31.
Yılmaz GE, Göktürk I, Ovezova M, Yılmaz F, Kılıç S, Denizli A. Antimicrobial Nanomaterials: A Review. Hygiene. 2023 Jul 19;3(3):269–90.
Dakhale R, Paul P, Achanta A, Ahuja KP, Meshram M. Nanotechnology Innovations Transforming Oral Health Care and Dentistry: A Review. Cureus. 2023 Oct;15(10):e46423.
Yamada M, Kato E, Yamamoto A, Sakurai K. A titanium surface with nano-ordered spikes and pores enhances human dermal fibroblastic extracellular matrix production and integration of collagen fibers. Biomed Mater. 2016 Feb 2;11(1):015010.
Yamada M, Kimura T, Nakamura N, Watanabe J, Kartikasari N, He X, et al. Titanium Nanosurface with a Biomimetic Physical Microenvironment to Induce Endogenous Regeneration of the Periodontium. ACS Appl Mater Interfaces. 2022 Jun 22;14(24):27703–19.
Wang H, Xu Q, Hu H, Shi C, Lin Z, Jiang H, et al. The Fabrication and Function of Strontium-modified Hierarchical Micro/Nano Titanium Implant. Int J Nanomedicine. 2020;15:8983–98.
Kartikasari N, Yamada M, Watanabe J, Tiskratok W, He X, Kamano Y, et al. Titanium surface with nanospikes tunes macrophage polarization to produce inhibitory factors for osteoclastogenesis through nanotopographic cues. Acta Biomater. 2022 Jan 1;137:316–30.
Cooper LF, Shirazi S. Osseointegration—the biological reality of successful dental implant therapy: a narrative review. Front Oral Maxillofac Med. 2022 Dec;4:39–39.
Parithimarkalaignan S, Padmanabhan T V. Osseointegration: an update. J Indian Prosthodont Soc. 2013 Mar;13(1):2–6.
Akshaya S, Rowlo PK, Dukle A, Nathanael AJ. Antibacterial Coatings for Titanium Implants: Recent Trends and Future Perspectives. Antibiotics. 2022 Nov 29;11(12):1719.
He X, Yamada M, Watanabe J, Tiskratok W, Ishibashi M, Kitaura H, et al. Titanium nanotopography induces osteocyte lacunar-canalicular networks to strengthen osseointegration. Acta Biomater. 2022 Oct 1;151:613–27.
Ciobanu G, Harja M. Bismuth-Doped Nanohydroxyapatite Coatings on Titanium Implants for Improved Radiopacity and Antimicrobial Activity. Nanomaterials. 2019 Nov 27;9(12):1696.
Kartikasari N, Yamada M, Watanabe J, Tiskratok W, He X, Egusa H. Titania nanospikes activate macrophage phagocytosis by ligand-independent contact stimulation. Sci Rep. 2022 Jul 18;12(1):12250.
Oliveira MG de, Radi PA, Reis DAP, Reis AG dos. Titanium Bioactive Surface Formation Via Alkali and Heat Treatments for Rapid Osseointegration. Mater Res. 2021;24(5):1–8.
Hatoko M, Komasa S, Zhang H, Sekino T, Okazaki J. UV Treatment Improves the Biocompatibility and Antibacterial Properties of Crystallized Nanostructured Titanium Surface. Int J Mol Sci. 2019 Nov 28;20(23):5991.
Ciobanu G, Harja M. Cerium-doped hydroxyapatite/collagen coatings on titanium for bone implants. Ceram Int. 2019 Feb;45(2):2852–7.
Zhao X, Ren X, Wang C, Huang B, Ma J, Ge B, et al. Enhancement of hydroxyapatite formation on titanium surface by alkali heat treatment combined with induction heating and acid etching. Surf Coatings Technol. 2020 Oct;399:126173.
Ishak MI, Delint RC, Liu X, Xu W, Tsimbouri PM, Nobbs AH, et al. Nanotextured titanium inhibits bacterial activity and supports cell growth on 2D and 3D substrate: A co-culture study. Biomater Adv. 2024 Apr;158:213766.
Wang Z, Mei L, Liu X, Zhou Q. Hierarchically hybrid biocoatings on Ti implants for enhanced antibacterial activity and osteogenesis. Colloids Surf B Biointerfaces. 2021 Aug;204:111802.
Goriainov V, Hulsart-Billstrom G, Sjostrom T, Dunlop DG, Su B, Oreffo ROC. Harnessing Nanotopography to Enhance Osseointegration of Clinical Orthopedic Titanium Implants-An in Vitro and in Vivo Analysis. Front Bioeng Biotechnol. 2018 Apr 11;6:44.
Quezada MM, Fernandes C, Montero J, Correia A, Salgado H, Fonseca P. A Different Approach to Analyzing the Surface Roughness of Prosthetic Dental Acrylic Resins. Appl Sci. 2024 Jan 11;14(2):619.
Lancashire HT. A simulated comparison between profile and areal surface parameters: $R_a$ as an estimate of $S_a$. arXiv Geophys [Internet]. 2017;1–9. Available from: http://arxiv.org/abs/1708.02284
Rosentritt M, Schneider-Feyrer S, Kurzendorfer L. Comparison of surface roughness parameters Ra/Sa and Rz/Sz with different measuring devices. J Mech Behav Biomed Mater. 2024 Feb;150:106349.
Jahani B, Xinnan W. The Effects of Surface Roughness on the Functionality of Ti13Nb13Zr Orthopedic Implants. Biomed J Sci Tech Res. 2021 Aug 3;38(1).
Swain BP. Nanostructured Materials and their Applications (Materials Horizons: From Nature to Nanomaterials). Singapore: Springer Verlag; 2021. 434 p.
Samanta A, Wang Q, Shaw SK, Ding H. Roles of chemistry modification for laser textured metal alloys to achieve extreme surface wetting behaviors. Mater Des. 2020 Jul;192:108744.
Tabuchi M, Hamajima K, Tanaka M, Sekiya T, Hirota M, Ogawa T. UV Light-Generated Superhydrophilicity of a Titanium Surface Enhances the Transfer, Diffusion and Adsorption of Osteogenic Factors from a Collagen Sponge. Int J Mol Sci. 2021 Jun 24;22(13):6811.
Uda Y, Azab E, Sun N, Shi C, Pajevic PD. Osteocyte Mechanobiology. Curr Osteoporos Rep. 2017 Aug;15(4):318–25.
Chen H, Senda T, Kubo K. The osteocyte plays multiple roles in bone remodeling and mineral homeostasis. Med Mol Morphol. 2015 Jun;48(2):61–8.
Shah FA, Wang X, Thomsen P, Grandfield K, Palmquist A. High-Resolution Visualization of the Osteocyte Lacuno-Canalicular Network Juxtaposed to the Surface of Nanotextured Titanium Implants in Human. ACS Biomater Sci Eng. 2015 May 11;1(5):305–13.
Kato E, Sakurai K, Yamada M. Periodontal-like gingival connective tissue attachment on titanium surface with nano-ordered spikes and pores created by alkali-heat treatment. Dent Mater. 2015 May;31(5):e116-30.
Buser D, Weber HP, Donath K, Fiorellini JP, Paquette DW, Williams RC. Soft tissue reactions to non-submerged unloaded titanium implants in beagle dogs. J Periodontol. 1992 Mar;63(3):225–35.
Ogura A, Yamaguchi S, Le PTM, Yamamoto K, Omori M, Inoue K, et al. The effect of simple heat treatment on apatite formation on grit‐blasted/acid‐etched dental Ti implants already in clinical use. J Biomed Mater Res Part B Appl Biomater. 2022 Feb;110(2):392–402.
Elsharkawy S, Gamea S, Karpukhina N, Al-Jawad M. Biomimetic Highly Ordered Apatite Coatings for Dental Implants. 2023. p. 1–18.
Yumeisa A, Damayanti L, Sumarsongko T, Harmaji A, Cahyanto A. Apatite Formation on Zirconia (Y-TZP) Coated with Carbonate Apatite in Simulated Body Fluid. Key Eng Mater. 2019 Dec;829:145–50.
Miron RJ, Bosshardt DD. OsteoMacs: Key players around bone biomaterials. Biomaterials. 2016 Mar;82:1–19.
Madel M-B, Ibáñez L, Wakkach A, de Vries TJ, Teti A, Apparailly F, et al. Immune Function and Diversity of Osteoclasts in Normal and Pathological Conditions. Front Immunol. 2019 Jun 19;10:1408.
Fretwurst T, Garaicoa-Pazmino C, Nelson K, Giannobile W V, Squarize CH, Larsson L, et al. Characterization of macrophages infiltrating peri-implantitis lesions. Clin Oral Implants Res. 2020 Mar;31(3):274–81.
Galarraga-Vinueza ME, Obreja K, Ramanauskaite A, Magini R, Begic A, Sader R, et al. Macrophage polarization in peri-implantitis lesions. Clin Oral Investig. 2021 Apr 4;25(4):2335–44.
Yamaguchi T, Movila A, Kataoka S, Wisitrasameewong W, Ruiz Torruella M, Murakoshi M, et al. Proinflammatory M1 Macrophages Inhibit RANKL-Induced Osteoclastogenesis. Roy CR, editor. Infect Immun. 2016 Oct;84(10):2802–12.
McWhorter FY, Davis CT, Liu WF. Physical and mechanical regulation of macrophage phenotype and function. Cell Mol Life Sci. 2015 Apr;72(7):1303–16.
He Y, Li Y, Zuo E, Chai S, Ren X, Fei T, et al. A Novel Antibacterial Titanium Modification with a Sustained Release of Pac-525. Nanomaterials. 2021 Dec 6;11(12):3306.
Janson O, Gururaj S, Pujari-Palmer S, Karlsson Ott M, Strømme M, Engqvist H, et al. Titanium surface modification to enhance antibacterial and bioactive properties while retaining biocompatibility. Mater Sci Eng C Mater Biol Appl. 2019 Mar;96:272–9.
Okuzu Y, Fujibayashi S, Yamaguchi S, Masamoto K, Otsuki B, Goto K, et al. In vitro study of antibacterial and osteogenic activity of titanium metal releasing strontium and silver ions. J Biomater Appl. 2021 Jan 20;35(6):670–80.
Dahle J, Arai Y. Environmental Geochemistry of Cerium: Applications and Toxicology of Cerium Oxide Nanoparticles. Int J Environ Res Public Health. 2015 Jan 23;12(2):1253–78.
Copyright (c) 2024 Nadia Kartikasari, Salsabilla Eliya Andaru, Aginta Gracia Shallomitha, Ratri Maya Sitalaksmi
This work is licensed under a Creative Commons Attribution 4.0 International License.
This is an open access journal, and articles are distributed under the terms of the Creative Commons Lisence, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.
Copyright notice:
IJDM by UNAIR is licensed under a Creative Commons Atribusi 4.0 Internasional.
- The journal allows the author to hold the copyright of the article without restrictions.
- The journal allows the author(s) to retain publishing rights without restrictions.
- The legal formal aspect of journal publication accessibility refers to Creative Commons Attribution (CC BY)