Growth, Pigment and Protein Production of Spirulina platensis under different Ca(NO3)2 concentrations
Downloads
Spirulina platensis is a filamentous cyanobacterium that has been commerically used for fish feed and human food supplement. Low-cost production of Spirulina is needed when considering large-scale culture especially for industrial purposes. The aim of this study was to explain the effect of calcium nitrate (Ca(NO3)2) on growth, biomass, pigment, and protein production of S. platensis and to determine the best calcium nitrate concentration for Spirulina production.The microalgae was cultured at four calcium nitrate concentrations (1, 1.5, 2.0 and 2.5 g/L) with salinity of 15 ppt, constant light intensity of 4,000 lux and photoperiod of 24:0 light:dark cycles for 4 days. The results showed that different calcium nitrate concentrations remarkably affected the growth, biomass production, pigment and protein content of S. platensis (p<0.05). The highest specific growth rate of 0.721 day-1 and biomass concentration of 1.512 g/Lwere achieved at calcium nitrate concentration of 2.5 g/L. Moreover, the algae had the highest chlorophyll-a, carotenoid and protein content at 2.5 g L-1. Increasing calcium nitrate concentration from 1 to 2.5 g/L led to an increase in biomass, pigment and protein production of S. platensis. However, there was no significant difference between 2 and 2.5 g L-1 calcium nitrate concentrations. We suggest that 2-2.5 g/L Ca(NO3)2 concentration can be used profitably for S. platensis production.
Ajayan, K.V., Selvaraju, M. and Thirugnanamoorthy, K., 2012. Enrichment of chlorophyll and phycobiliproteins in Spirulina platensis by the use of reflector light and nitrogen sources: An in-vitro study. Biomass and Bioenergy, 47, pp. 436-441.
Ak, I., Cirik, S. and Goksan, T., 2008. Effect of light intensity, salinity, and temperature on growth in Camalt1 strain of Dunaliella viridis Teodoresco from Turkey. Journal of Biological Sciences, 8(8), pp. 1356-1359.
Alonso, D. and Maroto, F., 2000. Plant as ‘chemical factories' for the production of polyunsaturated fatty acids. Biotechnology Advances, 18(6), pp. 481-497.
Bartley, M.L., Boeing, W.J., Daniel, D., Dungan, B.N. and Schaub, T. 2016. Optimization of environmental parameters for Nannochloropsis salina growth and lipid content using the response surface method and invading organisms. Journal of Applied Phycology, 28(1), pp. 15-24.
Becker, E.W., 1994. Biotechnology and Microbiology. Cambridge University Press. New York.
Cai, T., Park, S.Y. and Li, Y., 2013. Nutrient recovery from wastewater streams by microalgae: status and prospects. Renewable and Sustainable Energy Reviews, 19, pp. 360–369.
Çelekli, A. and Yavuzatmaca, M., 2009. Predictive modeling of biomass production by Spirulina platensis as function of nitrate and NaCl concentrations. Bioresource Technology, 100(5), pp. 1847–1851.
Christiani, C., Insan, A.I. dan Hidayah, H.A., 2017. Pertumbuhan mikroalga hasil budidaya skala laboratorium dengan media kultur limbah cair tapioka. Prosiding Seminar Nasional, 7, pp. 17-18.
Cohen, Z., Reungjitchachawali, M., Siangdung, W. and Tanticharoen, M., 1993. Production and partial purification of γ-linolenic acid and some pigments from Spirulina platensis. Journal of Applied Phycology, 5(1), pp. 109-115.
Costa, J.A.V., Cozza, K.L., Oliveira, L. and Magagnin, G., 2001. Different nitrogen sources and growth responses of Spirulina platensis. World Journal of Microbiology and Biotechnology, 17(5), pp. 439-442.
Estrada, J.E.P., Bescos, P.B. and Villar del Fresno, A.M., 2001. Antioxidant activity of different fractions of Spirulina platensis protean extract. Il Farmaco, 56(5-7), pp. 497-500.
Fabregas, J., Abalde, J., Cabezas, B., and Herrero, C., 1989. Changes in protein, carbohydrates and gross energy in the marine microalga Dunaliella tertiolecta (Butcher) by nitrogen concentrations as nitrate, nitrite and urea. Aquaculture Engineering, 8(4), pp. 223-39.
Fakhri, M., Arifin, N.B., Budianto, B., Yuniarti, A. and Hariati, A.M. 2015. Effect of salinity and photoperiod on growth of microalgae Nannochloropsis sp. and Tetraselmis sp. Nature Environment and Pollution Technology, 14(3), pp. 563- 566.
Fakhri, M., Arifin, N.B., Yuniarti, A. and Hariati, A.M., 2015. The influence of salinity on the growth and chlorophyll content of Nannochloropsis sp. BJ17. Nature Environment and Pollution Technology, 16(1), pp. 209-212.
Grobbelaar, J.U., 2004. Algal biotechnology: real opportunities for Africa. South African Journal of Botany, 70(1), pp. 140-144.
Hu, Q., 2013. Environmental effects on cell composition. In : Richmond A, Hu Q, editors Handbook of Microalgal Culture: Applied Phycology and Biotechnology. 2nd ed. Wiley Blackwell, West Sussex, pp. 114–122.
Janssen, M., Kuijpers, T.C., Veldhoen, B., Ternbach, M.B., Tramper, J., Mur, L.R. and Wijffels, R.H., 1999. Specific growth rates of Chlamydomonas reinhardtii and Chlorella sorokiniana under medium duration light/dark cycles: 13 -87s. Journal Biotechnology. 35, pp. 323-333.
Juneja, A., Ceballos, R.M. and Murthy, G.S., 2013. Effects of environmental factors and nutrient availability on the biochemical composition of algae for biofuels production: A review, Energies, 6, pp. 4607-4638.
Kim, G., Mujtaba, G. and Lee, K., 2016. Effects of nitrogen sources on cell growth and biochemical composition of marine chlorophyte Tetraselmis sp. for lipid production. Algae, 31(3), pp. 257-266.
Kumar, P., Shahi, S.K. and Sharma, P.K., 2012. Effect of various cultural factors on isolated Spirulina strain for lipid and biomass accumulation. Current Discovery, 1(1), pp. 13-18.
Masojidek, J., Torzillo, G. and Koblizek, M., 2013. Photosynthesis in microalgae. Handbook of Microalgal Culture: Applied Phycology and Biotechnology. Second Edition. Blackwell Publishing. New Jersey. 17 pp.
Menegol, T., Diprat, A.B., Rodrigues, E. and Rech, R., 2017. Effect of temperature and nitrogen concentration on biomass composition of Heterochlorella luteoviridis. Food Science and Technology, 37, pp. 28-37.
Nyabuto, D.K., Cao, K., Mariga, A.M., Kibue, G.W., He, M. and Wang, C., 2015. Growth performance and biochemical analysis of the genus Spirulina under different physical and chemical environmental factors. African Journal of Agricultural Research, 10(36), pp. 3614-3624.
Octhreeani, A.M., Supriharyono dan Soedarsono, P., 2014. Pengaruh perbedaan jenis pupuk terhadap pertumbuhan Nannochloropsis sp. dilihat dari kepadatan sel dan klorofil a pada skala semi massal. Diponegoro Journal of Maquares, 3(2), pp. 102-108.
Padmanabhan, M.R.A., Renita, A. and Stanley, S.H., 2010. Studies on the effect of nitrogen source and the growth of marine microalgae algae. Recent Advances in Space Technology Services and Climate Change, pp. 350-352.
Ponnuswamy, I., Madhavan, S. and Shabudeen, S., 2013. Isolation and characterization of green microalgae for carbon sequestration, waste water treatment and bio-fuel production. International Journal of Bio-Science and Bio-Technology, 5(2), pp. 17-26.
Pratiwi, N.T.M., Krisanti, M., Ayu, I.P., Iswantari, A. dan Apriadi, T., 2015. Serapan kalsium dan nutrien oleh alga berfilamen Spirogyra sp. pada lama penyinaran berbeda. Limnotek, 22(1), pp. 96-105.
Regista, A., Litaay, M. dan Umar, M.R., 2017. Pengaruh pemberian vermikompos cair Lumbricus rubellus Hoffmeister pada pertumbuhan Chlorella sp. BIOMA: Jurnal Biologi Makassar, 2(1), pp. 1-8.
Ritchie, R.J., 2006. Consistent sets of spectrophotometric chlorophyll equations for acetone, methanol and ethanol solvents. Photosynthesis Research, 89(1), pp. 27-41.
Sharma, J., Kumar, S., Sharma, P., Gupta, S., Manju, T., Malyan, S. and Bishnoi, N., 2017. Effect of different nitrogen sources on growth of algal consortia. Annals of Agri-bio Research, 22(2), pp. 150-153.
Singh, D., Barrow, C.J., Puri, M., Tuli, D.K. and Mathur, A.S., 2016. Combination of calcium and magnesium ions prevents substrate inhibition and promotes biomass and lipid production in thraustochytrids under higher glycerol concentration. Algal Research, 15, pp. 202-209.
Strickland, J., and Parsons, T.R., 1972. A Practical Handbook of Seawater Analysis, second ed. Fish Res Board Can Bull.
Suantika, G. dan Hendrawandi, D., 2009. Efektivitas teknik kultur menggunakan sistem kultur statis, semi-kontinyu, dan kontinyu terhadap produktivitas dan kualitas kultur Spirulina sp. Jurnal Matematika dan Sains, 14(2), pp. 41-50.
Suminto, S., 2009. Penggunaan jenis media kultur teknis terhadap produksi dan kandungan nutrisi sel Spirulina platensis. Jurnal Saintek Perikanan, 4(2), pp. 53-61.
Swandewi, I.G.A.P.A.P., Anggreni, A.A.M.D. dan Admadi, B., 2017. Pengaruh penambahan NaNO3 dan K2HPO4 pada media BG-11 terhadap konsentrasi biomassa dan klorofil Tetraselmis chuii. Jurnal Rekayasa dan Manajemen Agroindustri, 5(1), pp. 1-17.
Wahidin, S., Idris, A. and Shaleh, S. R. M. 2013. The influence of light intensity and photoperiod on the growth and lipid content of microalgae Nannochloropsis sp. Bioresource Technology, 129, pp. 7-11.
Widyantoro, H., Wijayanti, M., Dwinanti, S.H., 2018. Modifikasi media Spirulina platensis sebagai upaya pemanfaatan air limbah budidaya ikan lele. Jurnal Akuakultur Rawa Indonesia, 6(2), pp. 153-164.
Xin, L., Hong-ying, H., Ke, G. and Ying-xue, S., 2010. Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp. Bioresource Technology, 101(14), pp. 5494-5500.
Zhang, C., 2014. Essential functions of iron-requiring proteins in DNA replication, repair and cell cycle control. Protein Cell, 5, pp. 750-760.
1. The copyright of this journal belongs to the Editorial Board, based on the author's consent, while the moral rights of the publication belong to the author(s).
2. The formal legal aspect of journal accessibility refers to the same Creative Common Attribution + Noncommercial + ShareAlike (CC BY-NC-SA), implying that publication can be used for non-commercial purposes in its original form.
3. Every publication (printed/electronic) is open access for educational, research and library purposes. In addition to the objectives stated above, the editorial board is not responsible for copyright infringement