Effect of different sodium nitrate concentrations on the growth, biomass, and biochemical composition of Tetraselmis chuii
Downloads
Nitrogen plays a significant role in the growth and metabolism of microalgae. The purpose of this study was to investigate the influences of different sodium nitrate concentrations on growth, biomass, and biochemical profile in Tetraselmis chuii. Four different nitrate concentrations, 0.5, 1.0, 1.5, and 2.0 g/L NaNO3 were applied in T. chuii culture under a batch system. It was found that a low nitrate concentration of 0.5 g/L NaNO3 produced the highest specific growth rate and biomass concentration of T. chuii. On the other hand, increasing nitrate concentration led to an increase in chlorophyll a+b and carotenoid in T. chuii, with the optimum nitrate concentration found at 1.5 g/L NaNO3. Under the nitrogen limitation condition, protein content was significantly decreased, but lipid and carbohydrate content were highly accumulated in the cells. This study provides a unique phenomenon that low nitrogen concentrations not only produce higher biomass but also accumulate high lipid and carbohydrate content.
Andrade, L.M., Andrade, C.J., Dias, M., Nascimento, C.A.O. and Mendes, M.A., 2018. Chlorella and Spirulina microalgae as sources of functional foods, nutraceuticals, and food sup-plements; an overview. MOJ Food Processing & Technology, 6(1), p.45-58 https://doi.org/10.15406/mojfpt.2018.06.00144
Ansari, F.A., Guldhe, A., Gupta, S.K., Rawat, I. and Bux, F., 2021. Im-proving the feasibility of aquacul-ture feed by using microalgae. En-vironmental Science and Pollution Research, 28(32), p.43234–43257. https://doi.org/10.1007/s11356-021-14989-x
Araujo, G.S., Silva, J.W.A., Viana, C.A.S. and Fernandes, F.A.N., 2020. Effect of sodium nitrate concentration on biomass and oil production of four microalgae species. International Journal of Sustainable Energy, 39(1), p.41–50. https://doi.org/10.1080/14786451.2019.1634568
Oxborough, K., 2004. Using chlorophyll a fluorescence imaging to monitor photosynthetic performance. In Chlorophyll a Fluorescence: A Sig-nature of Photosynthesis, ed. GC Papageorgiou, Govindjee, pp. 409–28. Dordrecht: Springer
Bartley, M.L., Boeing, W.J., Daniel, D., Dungan, B.N. and Schaub, T., 2016. Optimization of environmental pa-rameters for Nannochloropsis salina growth and lipid content using the response surface method and invad-ing organisms. Journal of Applied Phycology, 28(1), p.15–24. https://doi.org/10.1007/s10811-015-0567-8
Beer, L.L., Boyd, E.S., Peters, J.W. and Posewitz, M.C., 2009. Engineering algae for biohydrogen and biofuel production. Current Opinion in Bio-technology, 20(3), p.264–271. https://doi.org/10.1016/j.copbio.2009.06.002
Bligh, E.G. and Dyer, W.J., 1959. A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37(8). p.911-7. https://doi.org/0.1139/o59-099.
Cai, T., Park, S.Y. and Li, Y. 2013. Nutri-ent recovery from wastewater streams by microalgae: Status and prospects. Renewable and Sustaina-ble Energy Reviews, 19, p.360–369. https://doi.org/10.1016/j.rser.2012.11.030
Chen, C.Y., Lee, P.J., Tan, C.H., Lo, Y.C., Huang, C.C., Show, P.L., Lin, C.H. and Chang, J.S. 2015. Improving protein production of indigenous microalga Chlorella vulgaris FSP-E by photobioreactor design and cul-tivation strategies. Biotechnology Journal, 10(6), p.905–914. https://doi.org/10.1002/biot.201400594
Chokshi, K., Pancha, I., Ghosh, A. and Mishra, S., 2017. Nitrogen starvation-induced cellular crosstalk of ROS-scavenging antioxidants and phytohormone enhanced the biofuel potential of green microalga Acutodesmus dimorphus. Biotech-nology for Biofuels, 10(1), 1–12. https://doi.org/10.1186/s13068-017-0747-7
Courchesne, N.M.D., Parisien, A., Wang, B. and Lan, C.Q., 2009. Enhance-ment of lipid production using bio-chemical, genetic and transcription factor engineering approaches. Journal of Biotechnology, 141(1–2), p.31–41. https://doi.org/10.1016/j.jbiotec.2009.02.018
Delgado, R. T., Mayara, &, Guarieiro, S., Antunes, P. W., Sérvio, &, Cassini, T., Terreros, H. M., De, V. and Fer-nandes, O., 2021. Effect of nitrogen limitation on growth, biochemical composition, and cell ultrastructure of the microalga Picocystis salinar-um. Journal of Applied Phycology, 33, p.2083–2092. https://doi.org/10.1007/s10811-021-02462-8
Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A., and Smith, F., 1956. Colorimetric method for determina-tion of sugars and related substanc-es. Analytical Chemistry, 28(3), p.350–356. https://doi.org/10.1021/ac60111a017
El-Kassas, H.Y., 2013. Growth and fatty acid profile of the marine microalga Picochlorum sp. grown under nutri-ent stress conditions. Egyptian Journal of Aquatic Research, 39(4), p.233–239. https://doi.org/10.1016/j.ejar.2013.12.007
Fakhri, M., Antika, P.W., Ekawati, A.W., Arifin, N.B., Yuniarti, A. and Hari-ati, A.M., 2021. Effect of glucose administration on biomass, β-carotene and protein content of Du-naliella sp. under mixotrophic cul-tivation. International Journal of Agriculture and Biology, 25(2), p.404–408. https://doi.org/10.17957/IJAB/15.1681
Fakhri, M., Arifin, N.B., Budianto, B., Yuniarti, A. and Hariati, A.M., 2015. Effect of salinity and photo-period on growth of microalgae Nannochloropsis sp. and Tetra-selmis sp. Nature Environment and Pollution Technology, 14(3), 563–566.
Fakhri, M., Riyani, E., Ekawati, A.W., Ari-fin, N.B., Yuniarti, A., Widyawati, Y., Saputra, I.K., Samuel, P.D., Arif, M.Z. and Hariati, A.M., 2021. Biomass, pigment production, and nutrient uptake of Chlorella sp. un-der different photoperiods. Biodi-versitas, 22(12), 5344–5349. https://doi.org/10.13057/biodiv/d221215
Feng, P., Deng, Z., Fan, L. and Hu, Z., 2012. Lipid accumulation and growth characteristics of Chlorella zofingiensis under different nitrate and phosphate concentrations. Journal of Bioscience and Bioengi-neering, 114(4), 405–410. https://doi.org/10.1016/j.jbiosc.2012.05.007
Griffiths, M.J. and Harrison, S.T.L., 2009. Lipid productivity as a key charac-teristic for choosing algal species for biodiesel production. Journal of Applied Phycology, 21(5), p.493–507. https://doi.org/10.1007/s10811-008-9392-7
Grobbelaar, J.U., 2004. Algal Nutrition ‒ Mineral Nutrition - Handbook of Microalgal Culture - Wiley Online Library. In A. Richmod (Ed.), Handbook of Microalgal Culture: Biotechnology and Applied Phycol-ogy : Second Edition (pp. 97–115). Blackwell Science Ltd.
Hemaiswarya, S., Raja, R., Kumar, R.R., Ganesan, V. and Anbazhagan, C. 2011. Microalgae: A sustainable feed source for aquaculture. World Journal of Microbiology and Bio-technology, 27(8), p.1737–1746. https://doi.org/10.1007/s11274-010-0632-z
Ho, S.H., Ye, X., Hasunuma, T., Chang, J.S. and Kondo, A., 2014. Perspec-tives on engineering strategies for improving biofuel production from microalgae - A critical review. Bio-technology Advances, 32(8), p.1448–1459. https://doi.org/10.1016/j.biotechadv.2014.09.002
Hu, P., Borglin, S., Kamennaya, N. a., Chen, L., Park, H., Mahoney, L., Ki-jac, A., Shan, G., Chavarría, K. L., Zhang, C., Quinn, N. W. T., Wem-mer, D., Holman, H.-Y. and Jans-son, C., 2013. Metabolic phenotyp-ing of the cyanobacterium Synecho-cystis 6803 engineered for produc-tion of alkanes and free fatty acids. Applied Energy, 102, 850–859. https://doi.org/10.1016/j.apenergy.2012.08.047
Kim, C.W., Sung, M.G., Nam, K., Moon, M., Kwon, J. H. and Yang, J.W., 2014. Effect of monochromatic il-lumination on lipid accumulation of Nannochloropsis gaditana under continuous cultivation. Bioresource Technology, 159, p.30–35. https://doi.org/10.1016/j.biortech.2014.02.024
Kim, G., Mujtaba, G. and Lee, K., 2016. Effects of nitrogen sources on cell growth and biochemical composi-tion of marine chlorophyte Tetra-selmis sp. For lipid production. Al-gae, 31(3), p.257–266. https://doi.org/10.4490/algae.2016.31.8.18
Kim, G., Mujtaba, G., Rizwan, M. anad Lee, K., 2014. Environmental stress strategies for stimulating lipid pro-duction from microalgae for bio-diesel. Applied Chemistry for Engi-neering, 25(6), p.553–558. https://doi.org/10.14478/ace.2014.1125
Kiran, B., Pathak, K., Kumar, R., Deshmukh, D. and Rani, N., 2016. Influence of varying nitrogen levels on lipid accumulation in Chlorella sp. International Journal of Envi-ronmental Science and Technology, 13(7), p.1823–1832. https://doi.org/10.1007/s13762-016-1021-4
Li, Y., Horsman, M., Wang, B., Wu, N. and Lan, C.Q., 2008. Effects of nitrogen sources on cell growth and lipid ac-cumulation of green alga Neochlo-ris oleoabundans. Applied Microbi-ology and Biotechnology, 81(4), p.629–636. https://doi.org/10.1007/s00253-008-1681-1
Liefer, J.D., Garg, A., Campbell, D. A., Ir-win, A. J., & Finkel, Z.V., 2018. Ni-trogen starvation induces distinct photosynthetic responses and recov-ery dynamics in diatoms and prasi-nophytes. PLoS ONE, 13(4), p.1–24. https://doi.org/10.1371/journal.pone.0195705
Lowry, O.H., Rosebrpugh, N.J., Farr, A.L. and Randall, R.J., 1951. Protein measurement with the Folin phenol reagent. The Journal of Biological Chemistry, 193(1), p.265–275. https://doi.org/10.1016/s0021-9258(19)52451-6
Lv, J.M., Cheng, L.H., Xu, X.H., Zhang, L. and Chen, H.L., 2010. Enhanced li-pid production of Chlorella vulgaris by adjustment of cultivation condi-tions. Bioresource Technology, 101(17), p.6797–6804. https://doi.org/10.1016/j.biortech.2010.03.120
Markou, G., 2015. Fed-batch cultivation of Arthrospira and Chlorella in ammo-nia-rich wastewater: Optimization of nutrient removal and biomass production. Bioresource Technolo-gy, 193, p.35–41. https://doi.org/10.1016/j.biortech.2015.06.071
Matos, A., Junior, M., Neto, E.B., Koening, M.L. and Eskinazi, E., 2007. Chem-ical compositon of three microalgae species for possible use in maricul-ture. Brazilian Archives of Biology and Technology, 50, p.461–467. https://doi.org/10.1590/S1516-89132007000300012
Mishra, N., Prasad, S.M and Mishra, N. 2019. Influence of high light inten-sity and nitrate deprivation on growth and biochemical composi-tion of the marine microalgae Isochrysis galbana. Brazilian Ar-chives of Biology and Technology, 62, p.1–13. https://doi.org/10.1590/1678-4324-2019180398
Mohsenpour, S.F., Hennige, S., Willough-by, N., Adeloye, A. and Gutierrez, T. 2021. Integrating micro-algae in-to wastewater treatment: A review. Science of the Total Environment, 752, p.142168. https://doi.org/10.1016/j.scitotenv.2020.142168
Morales-Sánchez, D., Tinoco-Valencia, R., Kyndt, J. and Martinez, A., 2013. Heterotrophic growth of Neochloris oleoabundans using glucose as a carbon source. Biotechnology for Biofuels, 6(1). https://doi.org/10.1186/1754-6834-6-100
Morowvat, M.H. and Ghasemi, Y., 2016. Culture medium optimization for enhanced β-carotene and biomass production by Dunaliella salina in mixotrophic culture. Biocatalysis and Agricultural Biotechnology, 7, p.217–223. https://doi.org/10.1016/j.bcab.2016.06.008
Pancha, I., Chokshi, K., George, B., Ghosh, T., Paliwal, C., Maurya, R. and Mishra, S., 2014. Nitrogen stress triggered biochemical and morpho-logical changes in the microalgae Scenedesmus sp. CCNM 1077. Bio-resource Technology, 156, 146–154. https://doi.org/10.1016/j.biortech.2014.01.025
Pruvost, J., Van Vooren, G., Cogne, G. and Legrand, J., 2009. Investigation of biomass and lipids production with Neochloris oleoabundans in photo-bioreactor. Bioresource Technology, 100(23), p.5988–5995. https://doi.org/10.1016/j.biortech.2009.06.004
Ritchie, R.J. 2006. Consistent sets of spec-trophotometric chlorophyll equa-tions for acetone, methanol and eth-anol solvents. Photosynthesis Re-search, 89(1), p.27–41. https://doi.org/10.1007/s11120-006-9065-9
Sánchez-García, D., Resendiz-Isidro, A., Villegas-Garrido, T.L., Flores-Ortiz, C.M., Chávez-Gómez, B. and Cris-tiani-Urbina, E., 2013. Effect of ni-trate on lipid production by T. suecica, M. contortum, and C. minutissima. Central European Journal of Biology, 8(6), p.578–590. https://doi.org/10.2478/s11535-013-0173-6
Siaut, M., Cuiné, S., Cagnon, C., Fessler, B., Nguyen, M., Carrier, P., Beyly, A., Beisson, F., Triantaphylidès, C., Li-beisson, Y. and Peltier, G., 2011. Oil accumulation in the model green alga Chlamydomonas rein-hardtii: characterization, variability between common laboratory strains and relationship with starch re-serves. BMC Biotechnology, 11, p.7. https://doi.org/10.1186/1472-6750-11-7
Singh, J. and Gu, S., 2010. Commercializa-tion potential of microalgae for bio-fuels production. Renewable and Sustainable Energy Reviews, 14(9), p.2596–2610. https://doi.org/10.1016/j.rser.2010.06.014
Takagi, M., Watanabe, K., Yamaberi, K. and Yoshida, T., 2000. Limited feeding of potassium nitrate for in-tracellular lipid and triglyceride ac-cumulation of Nannochloris sp. UTEX LB1999. Applied Microbiol-ogy and Biotechnology 54(1), p.112–117. https://doi.org/10.1007/s002530000333
Wang, J., Sommerfeld, M.R., Lu, C. and Hu, Q., 2013. Combined effect of initial biomass density and nitrogen concentration on growth and astaxanthin production of Haemato-coccus pluvialis (Chlorophyta) in outdoor cultivation. Algae, 28(2), p.193–202. https://doi.org/10.4490/algae.2013.28.2.193
Wen, Z.-Y. and Chen, F., (2003). Hetero-trophic production of eicosapentae-noic acid by microalgae. Biotech-nology Advances, 21(4), p.273–294. https://doi.org/10.1016/S0734-9750(03)00051-X
Wettern, M., 1980. Lipid variation of the green alga Fritschiella tuberosa during growth in axenic batch cul-ture. Phytochemistry 19(4), p.513–517. https://doi.org/10.1016/0031-9422(80)87005-1
White, D.A., Pagarette, A., Rooks, P. and Ali, S.T., 2013. The effect of sodi-um bicarbonate supplementation on growth and biochemical composi-tion of marine microalgae cultures. Journal of Applied Phycology, 25(1), p.153–165. https://doi.org/10.1007/s10811-012-9849-6
Xin, L., Hong-ying, H., Ke, G. and Ying-xue, S., 2010. Effects of different nitrogen and phosphorus concentra-tions on the growth, nutrient uptake, and lipid accumulation of a fresh-water microalga Scenedesmus sp. Bioresource Technology, 101(14), p.5494–5500. https://doi.org/10.1016/j.biortech.2010.02.016
Yaakob, M.A., Mohamed, R.M.S.R., Al-Gheethi, A., Gokare, R.A. and Am-bati, R.R., 2021. Influence of nitro-gen and phosphorus on microalgal growth, biomass, lipid, and fatty ac-id production: An overview. Cells, 10(2), p.393. https://doi.org/10.3390/cells10020393
Yang, L., Chen, J., Qin, S., Zeng, M., Jiang, Y., Hu, L., Xiao, P., Hao, W., Hu, Z., Lei, A. and Wang, J., 2018. Growth and lipid accumulation by different nutrients in the microalga Chlamydomonas reinhardtii. Bio-technology for Biofuels, 11(1), 1–12. https://doi.org/10.1186/s13068-018-1041-z
Young, E.B. and Beardall, J., 2003. Photo-synthetic function in Dunaliella ter-tiolecta (Chlorophyta) during a ni-trogen starvation and recovery cy-cle. Journal of Phycology, 39(5), p.897–905. https://doi.org/10.1046/j.1529-8817.2003.03042.x
Yuniarti, A., Fakhri, M., Arifin, N. B. and Hariati, A.M., 2023. Effects of vari-ous nitrogen sources on the growth and biochemical composition of Chlorella sp. Jurnal Ilmiah Peri-kanan Dan Kelautan, 15(2), 448–457. https://doi.org/10.20473/jipk.v15i2.43182
Zanella, L. and Vianello, F., 2020. Micro-algae of the genus Nannochloropsis: Chemical composition and func-tional implications for human nutri-tion. Journal of Functional Foods, 68, p.103919. https://doi.org/10.1016/j.jff.2020.103919
Zarrinmehr, M.J., Farhadian, O., Heyrati, F. P., Keramat, J., Koutra, E., Korna-ros, M. and Daneshvar, E., 2020. Ef-fect of nitrogen concentration on the growth rate and biochemical composition of the microalga, Isochrysis galbana. Egyptian Jour-nal of Aquatic Research, 46(2), p.153–158. https://doi.org/10.1016/j.ejar.2019.11.003
Copyright (c) 2025 Muhammad Fakhri, Albazi Achmad Amrulloh, Ating Yuniarti, Febriyani Eka Supriatin, Nasrullah Bai Arifin

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
1. The copyright of this journal belongs to the Editorial Board, based on the author's consent, while the moral rights of the publication belong to the author(s).
2. The formal legal aspect of journal accessibility refers to the same Creative Common Attribution + Noncommercial + ShareAlike (CC BY-NC-SA), implying that publication can be used for non-commercial purposes in its original form.
3. Every publication (printed/electronic) is open access for educational, research and library purposes. In addition to the objectives stated above, the editorial board is not responsible for copyright infringement