Evaluation of Flock Volume Levels on Water Quality and Production Performance of Catfish (Clarias gariepinus) Culture Using Micropore Pipe As Aeration Diffusers.
High floc accumulation in intensive catfish culture will increase the bacterial consumption of oxygen and affects the dissolved oxygen in the media is relatively low then affecting the fish growth. For control the floc accumulation is to remove the flock regularly. However, removing a large amount of floc will affect the flock's ability to control nitrogen waste in the water and the utilization of the flock as feed for fish will be minimum. The research was conducted to evaluate of floc volume levels on water quality and production performance of catfish culure in the biofloc system. The research design used a completely randomized design (CRD) with 4 treatments and 3 replications. The research treatments were floc volume level (KVF), namely (KVF) 20-40 ml/L, (KVF) 40-60 ml/L, (KVF) 60-80 ml/L and (KVF) 80-100 ml/L. The results showed that the water quality in all treatment were within the safe level for catfish. (KVF) 60-80 ml/L and 80-100 ml/L had higher survival rates of 100% (P <0.05). The growth rate in (KVF) 80-100 ml/L showed the lowest value compared of other treatments (P <0.05). (KVF) 60-80 ml/L can improve feed conversion ratio and increase protein retention by 59.17%, significantly different compared to other floc level treatment (P <0.05).
AftabUddin, S., Siddique, M.A.M., Sein, A., Dey, P.K., Md. Nabi, Md.R-Un., Haque, Md.A., 2020. First use of bioflc technology for Penaeus monodon culture in Bangladesh: Effects of stocking density on growth performance of shrimp, water quality and bacterial growth. Aquaculture Reports, 18, pp.100518. https://doi.org/10.1016/j.aqrep.2020.100518
APHA., 1998. Standard methods for the examination of the water and wastewater.American public health association. Washington DC.
Avnimelech, Y., 1999. Carbon/nitrogen ratio as a control element in aquaculture systems. Aquaculture, 176(3-4), pp.227-235. https://doi. org/10.1016/S0044-8486(99)00085-X
Bakar, N.S.A., Nasir, N.M., Lananan, F., Hamid, S.H.A., Lam, S.S., Jusoh, A., 2015. Optimization of c/n ratios for nutrient removal in aquaculture system culturing African catfish, (Clarias gariepinus) utilizing bioflocs technology. International Biodeterioration & Biodegradation, 102, pp.100-106. https://doi.org/10.1016/j.ibiod.2015.04.001
Boyd, C.E., Tucker, C.S., 1998. Pond aquaculture water quality management. Springer Science & Business Media. 10.1007/978-1-4615-5407-3
Carole, R.E., Brent, S., Pratheesh, O.S., Adam, N., 2011. Production and economic effects of in-pond grading of channel catfish. Aquaculture Engineering, 45 (1), pp.1-8. https://doi.org/10.1016/j.aquaeng.2011.03.004
Dawood, M.A.O., Gewaily, M.S., Monier, M.N., Younis, E.M., Doan, H.V., Sewilam, H., 2020. The regulatory roles of yucca extract on the growth rate, hepato-renal function, histopathological alterations, and immune-related genes in common carp exposed with acute ammonia stress, Aquaculture, 534, https://doi.org/10.1016/j.aquaculture.2020.736287
De Schryver, P., Crab, R., Defoirdt, T., Boon, N., Verstraete, W., (2008) The basic of bio-flocs technology: The added value for aquaculture. Aquaculture, 277, pp.125-127. https://doi.org/10.1016/j.aquaculture.2008.02.019
Ebeling, J.M., Timmons, M.B., Bisogni, J.J., 2006. Engineering analysis of the stoichiometry of photoautotrophic, autotrophic, and heterotrophic removal of ammonia–nitrogen in aquaculture systems. Aquaculture, 257(1-4), pp.346-358. https://doi.org/10.1016/j.aquaculture.2006.03.019
Ekasari, J., Angela, D., Waluyo, S.H., Bachtiar, T., Surawidjaja, E.H., Bossier, P., De Schryver, P., 2014. The size of biofloc determines the nutritional composition and the nitrogen recovery by aquaculture animals. Aquaculture,426-427, pp. 105-111. https://doi.org/10.1016/j.aquaculture.2014.01.023
Firman, S.W., Nirmala, K., Supriyono, E., Rochman, N.T., 2019. Evaluasi kinerja pembangkit gelembung mikro terhadap respons fisiologis ikan nila Oreochromis niloticus (Linnaeus, 1758) dengan kepadatan berbeda pada sistem resirkulasi. Jurnal Iktiologi Indonesia,19(3), pp.425-436. https://doi.org/10.32491/jii.v19i3.504
Gao, L., Shan, H.W., Zhang, T.W., Bao, W.Y., Ma, S., 2012. Effects of carbohydrate addition
on Litopenaeus vannamei intensive culture in a zero-water exchange system. Aquaculture, 342–343, pp.89–96. https://doi.org/10.1016/j.aquaculture.2012.02.022
Goddard, S., 1996. Feed management in intensive aquaculture. Chapman and Hall. New York. 10.1007/978-1-4613-1173-7.
Harris, E., 2010. Peningkatan efisiensi pakan dan konversi limbah budidaya ikan menjadi
produk ekonomis. Jurnal Akuakultur Indonesia, 9(2), pp.196-205. https://doi.org/10.19027/jai.9.196-205
Huisman, E.A., 1987. Principles of fish production. Department of Fish Culture and Fisheries, Wageningen Agriculture University, p.1-170.
Manley, C.B., Rakocinski, C.F., Lee, P.G., Blaylock, R.B., 2014. Stocking density effect on aggressive and cannibalistic behaviors in larval hatchery-reared spotted seatrout Cynoscion nebulosus.Aquaculture,420-421,p.89-94. https://doi.org/10.1016/j.aquaculture.2013.10.040
Schveitzer, R., Arantes, R., Fóes, S. P., Santo, E.M.C.C., Vinatea, L.A., Seiffert, W.Q., Andreatta, E.R., 2013. Effect of different biofloc levels on microbial activity, water quality and performance of Litopenaeus vannamei in a tank system operated with no water exchange. Aquacultural Engineering, 56, pp.59–70. https://doi.org/10.1016/j.aquaeng.2013.04.006
Sumitro, Afandi, A., Hidayat, K.W., Pratiwi, R., 2020. Evaluasi beberapa desain pipa mikropori sebagai sistem aerasi dalam budidaya ikan lele (Clarias gariepinus) intensif berbasis teknologi bioflok. Journal of Aquaculture and Fish Health, 9(2), pp.114-121. http://dx.doi.org/10.20473/jafh.v9i2.16692
Soetomo, M., 2000. Teknik Budidaya Ikan Lele dumbo. Sinar Baru Algensindo. Bandung. p. 5-90.
Watanabe, T., 1988. Fish nutrition and mariculture, JICA Textbook the General Aquaculture Course. Tokyo: Kanagawa International Fish Training Center.
Welker, A.F., Moreira, D.C., Campos, í‰.G. dan Hermes-Lima, M., 2013. Role of redox metabolism for adaptation of aquatic animals to drastic changes in oxygen availability. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology,
(4), pp.384-404. https://doi.org/10.1016/j.cbpa.2013.04.003
Xu, W.J., Pan, L.Q., Zhao, D.H., Huang, J., 2012. Preliminary investigation into the contribution of biofloc on protein nutrition of Litopenaeus vannamei fed with different dietary protein levels in zero-water exchange culture tanks. Aquaculture, 350–353, pp.147–153. https://doi.org/10.1016/j.aquaculture.2012.04.003
Zaki, M.A.A., Alabssawy, A.N., Nour, A. E.A.M., El Basuini, M.F., Dawood, M.A.O., Alkahtani, S., Abdel-Daim, M.M., 2020. The impact of stocking density and dietary carbon sources on the growth, oxidative status and stress markers of Nile tilapia (Oreochromis niloticus) reared under bioflc conditions. Aquaculture Reports, 16, pp.100282. https://doi.org/10.1016/j.aqrep.2020.100282
Copyright (c) 2022 Sumitro Sumitro, Arfan Afandi, Wa Ode Safia
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
1. The copyright of this journal belongs to the Editorial Board, based on the author's consent, while the moral rights of the publication belong to the author(s).
2. The formal legal aspect of journal accessibility refers to the same Creative Common Attribution + Noncommercial + ShareAlike (CC BY-NC-SA), implying that publication can be used for non-commercial purposes in its original form.
3. Every publication (printed/electronic) is open access for educational, research and library purposes. In addition to the objectives stated above, the editorial board is not responsible for copyright infringement