Karakter Solid Lipid Nano Particle (SLN) – Ubiquinon (Q10) dengan Beda Jenis Kosurfaktan: Poloxamer 188, Lesitin, Propilen Glikol

Noorma Rosita, Qurrotu A’yunin, Esti Hendradi

= http://dx.doi.org/10.20473/jfiki.v6i12019.17-24
Abstract views = 615 times | downloads = 1190 times

Abstract


Pendahuluan: Ubiquinon atau Coenzyme Q10 (CoQ10) merupakan senyawa kimia yang tidak stabil terhadap cahaya, sehingga mudah terdegradasi. Oleh karena itu, sistem penghantaran yang bisa meningkatkan kestabilan dari CoQ10 sangat dibutuhkan. Solid lipid nanoparticles (SLN) diketahui mampu meningkatan stabilitas molekul, dan memiliki karakteristik pelepasan terkontrol. Karakteristik SLN (ukuran partikel dan efisiensi penjebakan obat), sangat dipengaruhi kompoen penyusun SLN. Tujuan: Tujuan dari penelitian ini adalah untuk mengetahui pengaruh perbedaan jenis kosurfaktan terhadap karakteristik SLN-CoQ10. SLN-CoQ10 dibuat dengan metode high shear homogenization pada kecepatan 24000 rpm selama 2 menit, 4 siklus. Metode: Pada penelitian ini dibuat empat formula SLN-CoQ10 dengan propilen glikol (A1), poloxamer 188 (B1), lesitin (C1) sebagai kosurfaktan dan pembanding tanpa kosurfaktan (D1). Hasil: Ukuran diameter partikel SLN-CoQ10 yang dihasilkan dari kosurfaktan propilen glikol, poloxamer 188, lesitin dan yang tanpa menggunakan surfaktan berturut-turut adalah: 556,1 ± 4,89; 174,1 ± 6,69; 220,4 ± 12,01 dan 556,8 ± 17,96 nm  sementara itu persen efisiensi penjebakan yang dihasilkan berturut-turut adalah 32,47 ± 6,88; 77,38 ± 8,63; 19,77 ± 5,69; dan 16,09 ± 3,70 %.  Kesimpulan: Berdasarkan hasil evaluasi karakteristik, disimpulkan bahwa SLN-CoQ10 yang dibuat dengan ko-surfaktan poloxamer 188 memiliki karakteristik yang paling baik karena memiliki ukuran partikel kecil dan persen efisiensi penjebakan yang paling besar dibandingkan dengan SLN-CoQ10 dengan formula yang menggunakan ko-surfaktan propilen glikol, lesitin atau yang tanpa kosurfaktan.

Keywords


solid lipid nanoparticles, coenzyme Q10, kosurfaktan, ukuran partikel, efisiensi penjebakan

Full Text:

PDF

References


Barry, B. W. (1983). Dermatological Formulation Percutaneous Absorption. New York: Marcel Dekker, Inc.

Bhagavan, H. N. & Chopra, R. K. (2006). Coenzyme Q10: Absorption, Tissue Uptake, Metabolism and Pharmacokinetics. Free Radical Research; 40; 445–53.

Bose, S., Du, Y., Takhistov, P. & Michniak-Kohn, B. (2013). Formulation Optimization and Topical Delivery of Quercetin from Solid Lipid Based Nanosystems. International Journal of Pharmaceutics; 441; 56-66.

Brittain, C. G. (2009). Using Melting Point to Determine Purity of Crystalline Solids. http://www.chm.uri.edu/mmcgregor/chm228/use_of_melting_poi nt_apparatus.pdf. Accessed: 26 Juli 2017.

Chen, S., Wei, L., Jiangling, W., Xin, C., Conghui G., Hui Z., Shan, C., Xiaojing, Z., Yuxiang, T. & Xiangliang, Y. (2013). Preparation of Coenzyme Q10 Nanostructured Lipid Carriers for Epidermal Targeting with High-pressure Microfluidics Technique. Drug Development and Industrial Pharmacy; 39; 20-28.

Das, S. & Chaundhury, A. (2011). Recent Advantages in Lipid Nanoparticle Formulations with Solid Matrix for Oral Drug Delivery. American Association of Pharmaceutical Scientists; 12; 62-76.

Hendradi, E., Primaharinastiti, R. & Putranti, A. R. (2017). Effectivity and Physicochemical Stability of Nanostructured Lipid Carrier Coenzyme Q10 in Different Ratio of Lipid Cetyl Palmitate and Alpha Tocopheryl Acetate as Carrier. Asian Journal of Pharmaceutical and Clinical Research; 10; 146-152.

Hou, D., Xie, C., Huang, K. & Zhu, C. (2003). The Production and Characteristics of Solid Lipid Nanoparticles (SLNs). Biomaterials; 24; 1781-1785.

Jianmin, W., Yan, L., Hongxia, W., Xueyang, D., Hengfeng, F., Guoqing, L. & Qiang, X. (2011). Antioxidative Activity Evaluation of CoQ10-Nanostructured Lipid Carrier. Advanced Materials Research; 284; 989-992.

Kovacevic, A., Savia, S., Vuleta, G., Muller, R. H. & Keck, C. M. (2011). Polyhydroxy Surfactants for the Formulation of Lipid Nanoparticles (SLN and NLC): Effects on Size, Physical Stability and Particle Matrix Structure. International Journal of Pharmaceutics; 406; 163-172.

Mappamasing, F., Anwar, E., Mun’im, A. (2015). Formulation, Characterization and In Vitro Penetration Study of Resveratrol Solid Lipid Nanoparticles in Topical Cream. Jurnal Ilmu Kefarmasian Indonesia; 13; 137-144.

Martins, S., Tho, I., Souto, E., Ferreira, D. & Brandl, M. (2012). Multivariate Design for the Evaluation of Lipid and Surfactant Composition Effect for Optimisation of Lipid Nanoparticles. European Journal of Pharmaceutical Sciences; 45; 613-623.

Misra, A., Kalariya, M., Padhi, B. K. & Chougule, M. (2004). Methotrexate Loaded Solid Lipid Nanoparticles for Topical Treatment of Psoriasis: Formulation & Clinical Implication. Drug Delivery Technology; 13; 14-19.

Mistry, K. R. & Dipak, K. S. (2015). SLNs can Serve as the New Brachytherapy Seed: Determining Influence of Surfactants on Particle Size of Solid Lipid Microparticles and Development of Hydrophobised Copper Nanoparticles for Potential Insertion. Journal of Chemical Engineering & Process Technology; 7; 1-9.

Muller, R. H., Mäder, K. & Gohla, S. (2000). Solid Lipid Nanoparticles (SLN) for Controlled Drug Delivery. European Journal of Pharmaceutics and Biopharmaceutics; 50; 161-177.

Pardeike, J., Schwabe, K. & Müller, R. H. (2010). Influence of Nanostructured Lipid Carriers (NLC) on the Physical Properties of the Cutanova Nanorepair Q10 Cream and the In Vivo Skin Hydration Effect. International Journal of Pharmaceutics; 396; 166-173.

Pegi, A. G., Alenka, Z., Julijana, K., Polona, J. & Janez, K. (2011). Preparation of Nanoparticles by Using a Vibrating Nozzle Device. US: Patent Application.

Rosita, N., Setyawan, D., Soeratri, W. & Martodihardjo, S. (2014). Physical Characterization of Beeswax and Glyceryl Monostearat Binary System to Predict Characteristics of Solid Lipid Nanoparticle (SLN) Loaded Para Methoxy Cinnamic Acid (PMCA). International Journal of Pharmacy and Pharmaceutical Sciences; 6; 939-945.

Suter, F., Schmid, D., Wandrey, F. & Zülli, F. (2016). Heptapeptide-loaded Solid Lipid Nanoparticles for Cosmetic Anti-Aging Applications. European Journal of Pharmaceutics and Biopharmaceutics; 108; 304-309.

Svilenov, H. & Tzachev, C. (2014). Solid Lipid Nanoparticles - A Promising Drug Delivery System: Nanomedicine. Bulgaria: Sofia University.

Sweetman, S. (2009). Martindale The Complete Drug Reference 36th edition. London: Pharmaceutical Press.

Teeranachaideekul, V., Souto, E. B., Junyaprasert, V. B. & Muller, R. H. (2007). Cetyl Palmitate-based NLC for Topical Delivery of Coenzyme Q10 – Development, Physicochemical Characterization and In Vitro Release Studies. European Journal of Pharmaceutics and Biopharmaceutics; 67; 141-148.

Uner, M. (2006). Preparation, Characterization and Physicochemical of Solid Lipid Nanoparticles (SLN) and Nanostructured Lipid Carriers (NLC): Their Benefits as Colloidal Drug Carrier Systems. Pharmazie; 61; 375-86.

Waghmare, S., Grampurohit, N., Gadhave, M., Gaikwad, D. & Jadhav, S. (2012). SLN: A Promising Drug Delivery System. International Research Journal of Pharmacy; 3; 100-107.

Wang, J., Wang, H., Zhou, X., Tang, Z., Guoqing, Z., Guangyu, L. & Xia, Q. (2011). Physicochemical Characterization, Photo-stability, and Cytotoxicity of Coenzyme Q10-loading NLC. Journal of Nanoscience and Nanotechnology; 12; 2136-2148.

Wissing, S. A., Yener, G., Muller, R. H. (2004). Influence of Surfactants on the Physical Stability of Solid Lipid Nanoparticle (SLN) Formulations. International Journal of Pharmaceutical Sciences; 59; 331-332.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2019 JURNAL FARMASI DAN ILMU KEFARMASIAN INDONESIA

View JFIKI Stats

                

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License