Effect of Fenofibrate as PPARα Agonist in Suppressing the Development of Oxaliplatin-Induced Peripheral Neuropathy via TRPA1 Modulation
Downloads
Background: CIPN (Chemotherapy-induced Peripheral Neuropathy) primarily affects the sensory system and is accompanied by pain, autonomic dysfunction, and motor impairments. Alterations of intracellular second messengers at the supraspinal level in CIPN needed to be explored more. In addition, there is a lack of evidence regarding implications for the supraspinal area through the propagation of pain via the ascending pathway. Objective: In this study, we evaluated the effect of fenofibrate as a PPARα agonist in suppressing the development of CIPN. Methods: Twenty-four mice were distributed to the normal control group, neuropathy group, and neuropathy with the treatment of fenofibrate 75 and 150 mg/kg groups, resulting in 6 animals per group. Oxaliplatin was injected on days 0, 2, 4, and 6. The hot plate test was performed before the oxaliplatin administration and then continued on the 7th, 14th, and 21st days. Thalamus tissues were collected to measure the TRPA1 mRNA expression using qPCR. Results: Fenofibrate 75 mg/kg co-treatment with oxaliplatin tended to prevent the enhancement of oxaliplatin-induced thermal hyperalgesia in hind-paw withdrawal and rubbing responses. Furthermore, fenofibrate 75 and 150 mg/kg co-treatment with oxaliplatin significantly reduced the relative TRPA1 mRNA expression but did not modulate the relative BDNF mRNA expression in the thalamus. Conclusion: PPARα agonist has a potential effect in suppressing the development of CIPN. However, given the various perspectives on the role of neurotrophins in CIPN, additional non-clinical investigations, are needed to provide more insight into other mechanisms of CIPN and the role of PPAR agonists.
Antoniazzi, C. T. D. D., Nassini, R., Rigo, F. K., Milioli, A. M., Bellinaso, F., Camponogara, C., Silva, C. R., de Almeida, A. S., Rossato, M. F., De Logu, F., Oliveira, S. M., Cunha, T. M., Geppetti, P., Ferreira, J., & Trevisan, G. (2019). Transient receptor potential ankyrin 1 (TRPA1) plays a critical role in a mouse model of cancer pain. International Journal of Cancer, 144(2), 355–365.
Areti, A., Komirishetty, P., Kalvala, A. K., Nellaiappan, K., & Kumar, A. (2018). Rosmarinic Acid Mitigates Mitochondrial Dysfunction and Spinal Glial Activation in Oxaliplatin-induced Peripheral Neuropathy. Molecular Neurobiology, 55(9), 7463–7475.
Areti, A., Yerra, V. G., Naidu, V. G. M., & Kumar, A. (2014). Oxidative stress and nerve damage: Role in chemotherapy induced peripheral neuropathy. Redox Biology, 2(1), 289–295.
Baron, R., Binder, A., & Wasner, G. (2010). Neuropathic pain: diagnosis, pathophysiological mechanisms, and treatment. The Lancet. Neurology, 9(8), 807–819.
Burgess, J., Ferdousi, M., Gosal, D., Boon, C., Matsumoto, K., Marshall, A., Mak, T., Marshall, A., Frank, B., Malik, R. A., & Alam, U. (2021). Chemotherapy-Induced Peripheral Neuropathy: Epidemiology, Pathomechanisms and Treatment. Oncology and Therapy, 9(2), 385–450.
Caillaud, M., Patel, N. H., White, A., Wood, M., Contreras, K. M., Toma, W., Alkhlaif, Y., Roberts, J. L., Tran, T. H., Jackson, A. B., Poklis, J., Gewirtz, D. A., & Damaj, M. I. (2021). Targeting Peroxisome Proliferator-Activated Receptor-α (PPAR- α) to reduce paclitaxel-induced peripheral neuropathy. Brain, Behavior, and Immunity, 93(January), 172–185.
Campolo, M., Lanza, M., Paterniti, I., Filippone, A., Ardizzone, A., Casili, G., Scuderi, S. A., Puglisi, C., Mare, M., Memeo, L., Cuzzocrea, S., & Esposito, E. (2021). Pea-oxa mitigates oxaliplatin-induced painful neuropathy through nf-κb/nrf-2 axis. International Journal of Molecular Sciences, 22(8).
Castelli, G., Desai, K. M., & Cantone, R. E. (2020). Peripheral Neuropathy: Evaluation and Differential Diagnosis. American Family Physician, 102(12), 732–739.
D'Agostino, G., La Rana, G., Russo, R., Sasso, O., Iacono, A., Esposito, E., Mattace Raso, G., Cuzzocrea, S., LoVerme, J., Piomelli, D., Meli, R., & Calignano, A. (2009). Central administration of palmitoylethanolamide reduces hyperalgesia in mice via inhibition of NF-kappaB nuclear signalling in dorsal root ganglia. European journal of pharmacology, 613(1–3), 54–59.
Edwards, J. L., Little, A. A., & Feldman, E. L. (2022). Neuropathy. Type 1 Diabetes in Adults: Principles and Practice, 173–194.
Han, Y., & Smith, M. T. (2013). Pathobiology of cancer chemotherapy-induced peripheral neuropathy (CIPN). Frontiers in Pharmacology, 4.
Impellizzeri, D., Di Paola, R., Cordaro, M., Gugliandolo, E., Casili, G., Morittu, V. M., Britti, D., Esposito, E., & Cuzzocrea, S. (2016). Adelmidrol, a palmitoylethanolamide analogue, as a new pharmacological treatment for the management of acute and chronic inflammation. Biochemical pharmacology, 119, 27–41.
Jensen, T. S., & Finnerup, N. B. (2014). Allodynia and hyperalgesia in neuropathic pain: clinical manifestations and mechanisms. The Lancet Neurology, 13(9), 924–935.
Kameda, T., Zvick, J., Vuk, M., Sadowska, A., Tam, W. K., Leung, V. Y., Bölcskei, K., Helyes, Z., Applegate, L. A., Hausmann, O. N., Klasen, J., Krupkova, O., & Wuertz-Kozak, K. (2019). Expression and Activity of TRPA1 and TRPV1 in the Intervertebral Disc: Association with Inflammation and Matrix Remodeling. International Journal of Molecular Sciences 2019, Vol. 20, Page 1767, 20(7), 1767.
Kocot-KÄ™pska, M., ZajÄ…czkowska, R., Mika, J., Wordliczek, J., Dobrogowski, J., & Przeklasa-MuszyÅ„ska, A. (2021). Peripheral mechanisms of neuropathic pain”the role of neuronal and non-neuronal interactions and their implications for topical treatment of neuropathic pain. Pharmaceuticals, 14(2), 1–22.
Lee, J. H., Choi, J. H., Kim, J., Kim, T. W., Kim, J. Y., Chung, G., Cho, I. H., Jang, D. S., & Kim, S. K. (2022). Syringaresinol Alleviates Oxaliplatin-Induced Neuropathic Pain Symptoms by Inhibiting the Inflammatory Responses of Spinal Microglia. Molecules, 27(23).
Lin, Y. T., Ro, L. S., Wang, H. L., & Chen, J. C. (2011). Up-regulation of dorsal root ganglia BDNF and trkB receptor in inflammatory pain: An in vivo and in vitro study. Journal of Neuroinflammation, 8.
Nagasaka, K., Yamanaka, K., Ogawa, S., Takamatsu, H., & Higo, N. (2017). Brain activity changes in a macaque model of oxaliplatin-induced neuropathic cold hypersensitivity. Scientific Reports 2017 7:1, 7(1), 1–9.
Okine, B. N., Gaspar, J. C., & Finn, D. P. (2019). PPARs and pain. British Journal of Pharmacology, 176(10), 1421–1442.
Oliveira, A. C. P., Bertollo, C. M., Rocha, L. T. S., Nascimento, E. B., Costa, K. A., & Coelho, M. M. (2007). Antinociceptive and antiedematogenic activities of fenofibrate, an agonist of PPAR alpha, and pioglitazone, an agonist of PPAR gamma. European Journal of Pharmacology, 561(1–3), 194–201.
Seretny, M., Currie, G. L., Sena, E. S., Ramnarine, S., Grant, R., Macleod, M. R., Colvin, L. A., & Fallon, M. (2014). Incidence, prevalence, and predictors of chemotherapy-induced peripheral neuropathy: A systematic review and meta-analysis. Pain, 155(12), 2461–2470.
Thibault, K., Calvino, B., Dubacq, S., Roualle-De-Rouville, M., Sordoillet, V., Rivals, I., & Pezet, S. (2012). Cortical effect of oxaliplatin associated with sustained neuropathic pain: Exacerbation of cortical activity and down-regulation of potassium channel expression in somatosensory cortex. Pain, 153(8), 1636–1647.
Trevisan, G., Materazzi, S., Fusi, C., Altomare, A., Aldini, G., Lodovici, M., Patacchini, R., Geppetti, P., & Nassini, R. (2013). Novel therapeutic strategy to prevent chemotherapy-induced persistent sensory neuropathy by TRPA1 blockade. Cancer Research, 73(10), 3120–3131.
Wang, Y. song, Li, Y. yuan, Cui, W., Li, L. bin, Zhang, Z. cai, Tian, B. ping, & Zhang, G. sheng. (2017). Melatonin Attenuates Pain Hypersensitivity and Decreases Astrocyte-Mediated Spinal Neuroinflammation in a Rat Model of Oxaliplatin-Induced Pain. Inflammation, 40(6), 2052–2061.
Wang, Y., Yu, X., Song, H., Feng, D., Jiang, Y., Wu, S., & Geng, J. (2018). The STAT-ROS cycle extends IFN-induced cancer cell apoptosis. International Journal of Oncology, 52(1), 305–313.
Copyright (c) 2023 JURNAL FARMASI DAN ILMU KEFARMASIAN INDONESIA
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
1. The copyright of this journal belongs to the Editorial Board and Journal Manager with the author's knowledge, while the moral right of the publication belong to the author.
2. The formal legal aspect of journal publication accessibility refers to the Creative Commons Attribution-Non-Commercial-Share Alike (CC BY-NC-SA), which implies that the publication can be used for non-commercial purposes in its original form.
3. Every publication (print/electronic) is open access for educational, research, and library purposes. In addition to the objectives mentioned above, the editorial board is not responsible for copyright infringement