The Effect of Serotonin-Norepinephrine Reuptake Inhibitor Milnacipran on Anxiety-like Behaviors in Diabetic Mice
Downloads
Bisong, S. A., Nku, C. O., Nwoke, K. U. & Osim, E. E. (2018). Crude Aqueous Leave Extract of Carica papaya linn (Pawpaw) Reduced Anxiety and Fear Related Behaviour in cd1 Mice. European Journal of Pharmaceutical and Medical Research; 5; 488–493.
Bourin, M., Masse, F., Dailly, E. & Hascoí«t, M. (2005). Anxiolytic-like Effect of Milnacipran in the Four-Plate Test in Mice: Mechanism of Action. Pharmacology Biochemistry and Behavior; 81; 645–656.
Grahn, R. E., Kalman, B. A., Brennan, F. X., Watkins, L. R. & Maier, S. F. (1995). The Elevated Plus-Maze is not Sensitive to the Effect of Stressor Controllability in Rats. Pharmacology, Biochemistry and Behavior; 52; 565–570.
Ho, N., Sommers, M. S. & Lucki, I. (2013). Effects of Diabetes on Hippocampal Neurogenesis: Links to Cognition and Depression. Neuroscience and Biobehavioral Reviews; 37; 1346-1362.
Ighodaro, O. M., Adeosun, A. M. & Akinloye, O. A. (2017). Alloxan-Induced Diabetes, a Common Model for Evaluating the Glycemic-Control Potential of Therapeutic Compounds and Plants Extracts in Experimental Studies. Medicina (Lithuania); 53; 365–374.
Kamei, J., Miyata, S., Morita, K., Saitoh, A. & Takeda, H. (2003). Effects of Selective Serotonin Reuptake Inhibitors on Immobility Time in the Tail Suspension Test in Streptozotocin-Induced Diabetic Mice. Pharmacology Biochemistry and Behavior; 75; 247–254.
Li, H. Q., Chi, S., Dong, Q. & Yu, J. T. (2019). Pharmacotherapeutic Strategies for Managing Comorbid Depression and Diabetes. Expert Opinion on Pharmacotherapy; 20; 1589–1599.
Li, J., Lu, C., Gao, Z., Feng, Y., Luo, H., Lu, T., Sun, X., Hu, J. & Luo, Y. (2020). SNRIs Achieve Faster Antidepressant Effects than SSRIs by Elevating the Concentrations of Dopamine in the Forebrain. Neuropharmacology; 177; 1-11.
Miyamoto, J., Tsuji, M., Takeda, H., Ohzeki, M., Nawa, H. & Matsumiya, T. (2004). Characterization of the Anxiolytic-Like Effects of Fluvoxamine, Milnacipran and Risperidone in Mice Using the Conditioned Fear Stress Paradigm. European Journal of Pharmacology; 504; 97–103.
Mochizuki, D., Tsujita, R., Yamada, S., Kawasaki, K., Otsuka, Y., Hashimoto, S., Hattori, T., Kitamura, Y. & Miki, N. (2002). Neurochemical and Behavioural Characterization of Milnacipran, a Serotonin and Noradrenaline Reuptake Inhibitor in Rats. Psychopharmacology; 162; 323–332.
Moret, C. & Briley, M. (2011). The Importance of Norepinephrine in Depression. Neuropsychiatric Disease and Treatment; 7; 9–13.
Moulton, C. D., Pickup, J. C. & Ismail, K. (2015). The Link between Depression and Diabetes: the Search for Shared Mechanisms. The Lancet Diabetes and Endocrinology; 3; 461–471.
Murthi, P. & Vaillancourt, C. (2019). Placental Serotonin Systems in Pregnancy Metabolic Complications Associated with Maternal Obesity and Gestational Diabetes Mellitus. BBA-Molecular Basis of Disease; 1866; 1-8.
Myers, A. K., Grannemann, B. D., Lingvay, I. & Trivedi, M. H. (2013). Brief Report: Depression and History of Suicide Attempts in Adults with New-Onset Type 2 Diabetes. Psychoneuroendocrinology; 38; 2810–2814.
Qiao, J., Wang, J., Wang, H., Zhang, Y., Zhu, S., Adilijiang, A., Guo, H., Zhang, R., Guo, W., Luo, G., Qiu, Y., Xu, H., Kong, J., Huang, Q. & Li, X. M. (2016). Regulation of Astrocyte Pathology by Fluoxetine Prevents the Deterioration of Alzheimer Phenotypes in an APP/PS1 Mouse Model. Glia; 64; 240–254.
Qiu, Z. K., He, J. L., Liu, X., Zhang, G. H., Zeng, J., Nie, H., Shen, Y. G. & Chen, J. S. (2016). The Antidepressant-Like Activity of AC-5216, a Ligand for 18KDa Translocator Protein (TSPO), in an Animal Model of Diabetes Mellitus. Scientific Reports; 6; 1–13.
Saravia, F. E., Revsin, Y., Gonzalez Deniselle, M. C., Gonzalez, S. L., Roig, P., Lima, A., Homo-Delarche, F. & De Nicola, A. F. (2002). Increased Astrocyte Reactivity in the Hippocampus of Murine Models of Type 1 Diabetes: the Nonobese Diabetic (NOD) and Streptozotocin-Treated Mice. Brain Research; 957; 345–353.
Sartorius, N. (2018). Depression and Diabetes, Translational Research. Dialogues in Clinical Neuroscience; 20; 47–52.
Seo, J. H. (2018). Treadmill Exercise Alleviates Stress-Induced Anxiety-Like Behaviors in Rats. Journal of Exercise Rehabilitation; 14; 724–730.
Silva, A. I., Holanda, V. A. D., Azevedo Neto, J. G., Silva Junior, E. D., Soares-Rachetti, V. P., Calo, G., Ruzza, C. & Gavioli, E. C. (2020). Blockade of NOP Receptor Modulates Anxiety-Related Behaviors in Mice Exposed to Inescapable Stress. Psychopharmacology; 237; 1633–1642.
Takeuchi, T., Owa, T., Nishino, T. & Kamei, C. (2010). Assessing Anxiolytic-Like Effects of Selective Serotonin Reuptake Inhibitors and Serotonin-Noradrenaline Reuptake Inhibitors using the Elevated Plus Maze in Mice. Methods and Finding in Experimental and Clinical Pharmacology; 32; 113–121.
Thorré, K., Chaouloff, F., Sarre, S., Meeusen, R., Ebinger, G. & Michotte, Y. (1997). Differential Effects of Restraint Stress on Hippocampal 5-HT Metabolism and Extracellular Levels of 5-HT in Streptozotocin-Diabetic Rats. Brain Research; 772; 209–216.
Tucker, L. B. & McCabe, J. T. (2017). Behavior of Male and Female C57Bl/6J Mice is More Consistent with Repeated Trials in the Elevated Zero Maze than in the Elevated Plus Maze. Frontiers in Behavioral Neuroscience; 11; 1–8.
Walia, V., Garg, C. & Garg, M. (2019). NO-sGC-cGMP Signaling Influence the Anxiolytic Like Effect of Lithium in Mice in Light and Dark Box and Elevated Plus Maze. Brain Research; 1704; 114–126.
Yuan, P., Zhang, J., Li, L. & Song, Z. (2019). Fluoxetine Attenuated Anxiety-Like Behaviors in Streptozotocin-Induced Diabetic Mice by Mitigating the Inflammation. Mediators of Inflammation; 2019; 1-8.
Zhang, K., Lu, J. & Yao, L. (2020). Involvement of the Dopamine D1 Receptor System in the Anxiolytic Effect of Cedrol in the Elevated Plus Maze and Light–Dark Box Tests. Journal of Pharmacological Sciences; 142; 26–33.
1. The copyright of this journal belongs to the Editorial Board and Journal Manager with the author's knowledge, while the moral right of the publication belong to the author.
2. The formal legal aspect of journal publication accessibility refers to the Creative Commons Attribution-Non-Commercial-Share Alike (CC BY-NC-SA), which implies that the publication can be used for non-commercial purposes in its original form.
3. Every publication (print/electronic) is open access for educational, research, and library purposes. In addition to the objectives mentioned above, the editorial board is not responsible for copyright infringement