Molecular Docking and QSAR Study of 5-O-acylpinostrobin Derivatives as Topoisomerase IIα Inhibitors
Downloads
Background: Cancer is one of the top causes of death worldwide. A wide range of illnesses known as cancer can start in almost any organ or tissue in the body when abnormal cells multiply uncontrollably. Cancer patients have higher levels of the Topo IIα protein in their cells, this protein has been proposed as a relevant target for anticancer treatment development. Objective: This study aims to predict the anticancer activity of pinostrobin and 5-O-acylpinostrobin derivatives against topoisomerase IIα by docking molecular and QSAR study. Methods: In silico analysis was performed using the structure of the topoisomerase IIα (PDB: 5GWK)) as templates. Molecular docking analysis was performed with AutoDock Vina. Result: All 5-O-acyl pinostrobin derivatives, showed lower ΔG values than the parent pinostrobin. The 5-O-acetyl pinostrobin compound showed the highest score, namely -9.14 kcal/mol. 5-O-acetyl pinostrobin is predicted as the most powerful inhibitor that can cause inhibition of topoisomerase IIα. Conclution: The results of the best QSAR equation obtained can be used as a reference for predicting the activity of the new pinostrobin derivatives to be synthesized by inserting the electronic (Etot) parameter values of the compounds into the equation.
Agustin, S. L., Widiandani, T., Hardjono, S., Purwanto, B. T. (2022). QSAR of Acyl Pinostrobin Derivatives as Anti-Breast Cancer Against HER-2 Receptor and Their ADMET Properties Based on In Silico Study. Research Journal of Pharmacy and Technology; 15; 4641-4648. doi: 10.52711/0974-360X.2022.00779.
Daoui, O., Elkhattabi, S., Chtita, S., Elkhalabi, R., Zgou, H. & Benjelloun, A. T. (2021). QSAR, Molecular Docking and ADMET Properties In Silico Studies of Novel 4,5,6,7-tetrahydrobenzo[D]-thiazol-2-Yl Derivatives Derived from Dimedone as Potent Anti-Tumor Agents Through Inhibition of C-Met Receptor Tyrosine Kinase. Heliyon; 7; 1-20. doi: 10.1016/j.heliyon.2021.e07463
Delgado, J. L., Hsieh, C. M., Chan, N. L. & Hiasa, H. (2018). Topoisomerases as Anticancer Targets. The Biochemical Journal; 475; 373–398. doi: 10.1042/BCJ20160583.
Ekins, S., Mestres, J. & Testa, B. (2007). In Silico Pharmacology for Drug Discovery: Methods for Virtual Ligand Screening and Profiling. British Journal of Pharmacology; 152; 9-20. doi: 10.1038/sj.bjp.0707305.
Flörkemeier, I., Steinhauer, T. N., Hedemann, N., Ölander, M., Artursson, P., Clement, B. & Bauerschlag, D. O. (2021). Newly Developed Dual Topoisomerase Inhibitor P8-D6 is Highly Active in Ovarian Cancer. Therapeutic Advances in Medical Oncology; 13; 1-11. doi: 10.1177/17588359211059896.
Jaudan, A., Sharma, S., Abd Malek, S. N., & Dixit, A. (2018). Induction of Apoptosis by Pinostrobin in Human Cervical Cancer Cells: Possible Mechanism of Action. PLOS ONE; 13; 1-23. doi: 10.1371/journal.pone.0191523.
Listyawati, S., Sismindari, Mubarika, S., Murti, Y. B. & Ikawati, M. (2016). Anti-Proliferative Activity and Apoptosis Induction of an Ethanolic Extract of Boesenbergia pandurata (Roxb.) Schlecht. against HeLa and Vero Cell Lines. Asian Pacific Journal of Cancer Prevention; 17; 183–187. doi: 10.7314/apjcp.2016.17.1.183.
Martel, C., Georges, D., Bray, F., Ferlay, J. & Clifford, G. M. (2020). Global Burden of Cancer Attributable to Infections in 2018: A Worldwide Incidence Analysis. Lancet Global Health; 8; e180-e190. doi: 10.1016/S2214-109X(19)30488-7.
Mastrangelo, S., Attina, G., Triarico, S., Romano, A., Maurizi, P. & Ruggiero, A. (2022). The DNA-topoisomerase Inhibitors in Cancer Therapy. Biomed Pharmacol Journal; 15; 553-562. doi: 10.13005/bpj/2396.
Meng, X. Y., Zhang, H. X., Mezei, M. & Cui, M. (2012). Molecular Docking: A Powerful Approach for Structure-Based Drug Discovery. Current Computer Aided-Drug Design; 7; 146–157. doi: 10.2174/157340911795677602.
Nagata, S. (1997). Apoptosis by Death Factor. Cell; 88; 355-365. doi: 10.1016/s0092-8674(00)81874-7.
Pal, A. & Kundu, R. (2020). Human Papillomavirus E6 and E7: The Cervical Cancer Hallmarks and Targets for Therapy. Frontiers in Microbiology; 10; 1-15. DOI: 10.3389/fmicb.2019.03116.
Praditapuspa, E. N., Siswandono & Widiandani, T. (2021). In Silico Analysis of Pinostrobin Derivatives from Boesenbergia pandurata on Erbb4 Kinase Target and QSPR Linear Models to Predict Drug Clearance for Searching Anti-Breast Cancer Drug Candidates. Pharmacognosy Journal; 13; 1143-1149. doi: 10.5530/pj.2021.13.147.
Pratama, M. R. F., Praditapuspa, E. N., Kesuma, D., Poer-Wono, H., Widiandani, T. & Siswodihardjo, S. (2022). Boesenbergia pandurata as an Anti-Breast Cancer Agent: Molecular Docking and ADMET Study. Letters in Drug Design and Discovery; 19; 606-626. doi: 10.2174/1570180819666211220111245.
Serrano, J., Palmeira, C. M., Kuehl, D. W. & Wallace, K. B. (1999). Cardioselective and Cumulative Oxidation of Mitochondrial DNA Following Subchronic Doxorubicin Administration. Biochimica et Biophysica Acta; 1411; 201–205. doi: 10.1016/s0005-2728(99)00011-0.
Sheng, Y., Saridakis, S., Sarkari, F., Duan, S., Wu, T., Arrowsmith, C. H. & Frappier, L. (2006). Molecular Recognition of p53 and MDM2 by USP7/HAUSP. Nature Structural & Molecular Biology; 13; 285–291.
Sher, Y. P., Lee, C., Liu, S. Y., Chen, I. H., Lee, M. H., Chiu, F. F., Leng, C. H. & Liu, S. J. (2028). A Therapeutic Vaccine Targeting HPV E6/E7 with Intrinsic Toll-Like Receptor 2 Agonist Activity Induces Antitumor Immunity. American Journal of Cancer Research; 8; 2528-2537.
Siswandono. (2016). Kimia Medisinal 1. Surabaya: Airlangga University Press.
Siswandono, Widyowati, R., Suryadi, A., Widiandani, T. & Prismawan, D. (2020). Molecular Modeling, Synthesis, and QSAR of 5-O-Acylpinostrobin Derivatives as Promising Analgesic Agent. Rasayan Journal of Chemistry; 13; 2559-2568. doi: 10.31788/RJC.2020.1345749.
Sukardiman, Darwanto, A., Tanjung, M. & Darmadi, M.O. (2000). Cytotoxic Mechanism of Flavonoid from Temu Kunci (Kaempferia pandurata) in Cell Culture of Human Mammary Carcinoma. Clinical Hemorheology and Microcirculation; 23; 185-190.
Sukardiman, C. D., Plumeriastuti, H., & Arifianti, L. (2014). Anticancer Effect of Pinostrobin from (Kampferia pandurata Roxb) in Benzo (a) Pyrene-Induced Fibrosarcoma in Mice. E-Journal Planta Husada; 2; 44-46.
Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A. & Bray, F. (2021). Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians; 71; 209–249. doi: 10.3322/caac.21660.
Suryadi, A., Siswodihardjo, S., Widiandani, T. & Widyowati, R. (2021). Structure Modifications of Pinostrobin from Temu Kunci (Boesenbergia pandurata Roxb. Schlecht) and Their Analgesic Activity Based on In Silico Studies. Research Journal of Pharmacy and Technology; 14; 2089-2094. doi: 10.52711/0974-360X.2021.00370.
Vejpongsa, P., & Yeh, E. T. (2014). Prevention of Anthracycline-Induced Cardiotoxicity: Challenges and Opportunities. Journal of the American College of Cardiology; 64; 938–945. doi: 10.1016/j.jacc.2014.06.1167.
Widiandani, T., Tandian, T., Zufar, B. D., Suryadi, A., Purwanto, B. T., Hardjono, S. & Siswandono (2023). In Vitro Study of Pinostrobin Propionate and Pinostrobin Butyrate: Cytotoxic Activity Against Breast Cancer Cell T47D and Its Selectivity Index. Journal of Public Health in Africa; 14; 2516. doi: 10.4081/jphia.2023.2516.
Widiyana, A. P., Widiandani, T. & Siswodihardjo, S. (2023). Molecular Docking and QSPR of 5-O-acetylpinostrobin Derivatives That Inhibit ERα as Breast Cancer Drug Candidates. Journal of Medicinal and Pharmaceutical Chemistry Research; 5; 1194-1203. doi: 10.48309/jmpcr.2023.182473.
Wong, R. S. Y. (2011). Apoptosis in Cancer: from Pathogenesis to Treatment. Journal of Experimental & Clinical Cancer Research; 30; 1-14.
Zhao, N., Woodle, M. C. & Mixson, A. J. (2018). Advances in Delivery Systems for Doxorubicin. Journal of Nanomedicine & Nanotechnology; 9; 1-22. doi: 10.4172/2157-7439.1000519.
Copyright (c) 2024 JURNAL FARMASI DAN ILMU KEFARMASIAN INDONESIA
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
1. The copyright of this journal belongs to the Editorial Board and Journal Manager with the author's knowledge, while the moral right of the publication belong to the author.
2. The formal legal aspect of journal publication accessibility refers to the Creative Commons Attribution-Non-Commercial-Share Alike (CC BY-NC-SA), which implies that the publication can be used for non-commercial purposes in its original form.
3. Every publication (print/electronic) is open access for educational, research, and library purposes. In addition to the objectives mentioned above, the editorial board is not responsible for copyright infringement