The Effect of Quercetin on Coenzyme HMG-CoAR, ABCA1 Transporter, Dyslipidemia Profile and Hepatic Function in Rats Dyslipidemia Model
Downloads
Background: Dyslipidemia is a lipid metabolic disorder that increases the risk of cardiovascular disease, typically marked by abnormalities in triglycerides (TG), low-density lipoprotein (LDL), and total cholesterol (TC), along with decreased high-density lipoprotein (HDL) levels. This study explored the potential of quercetin, a natural substance, as a preventive agent against dyslipidemia induced by high-fat diet (HFD) in a rat model. Simvastatin, a standard cholesterol-lowering drug, was used for the comparison. Objective: The main objective of this research was to evaluate the potential of quercetin in lipid metabolism for dyslipidemia caused by HFD and compare its effects with the first-line drug therapy simvastatin, which has a similar mechanism. Methods: Rats fed a HFD were treated with quercetin and simvastatin, and their lipid profiles, liver enzyme activities, and molecular markers related to cholesterol metabolism were analyzed. Results: Quercetin markedly decreased cholesterol levels by inhibiting the enzyme 3-Hydroxy-3-Methylglutaryl-CoA Reductase (HMG CoAR). Cellular observation revealed that it also prevented liver damage and showed a protective effect on liver enzyme activity. Quercetin enhanced the expression of the Adenosine Triphosphate Binding Cassette subfamily A member 1 (ABCA1) protein, showing a protective effect against dyslipidemia akin to simvastatin, yet with a reduced likelihood of liver toxicity. Conclusion: Quercetin may serve as an effective and safer alternative to simvastatin for treating dyslipidemia, offering cholesterol-lowering benefits without hepatotoxic risks associated with long-term statin therapy.
Abo-Zaid OA, Moawed FS, Ismail ES, Farrag MA. β-sitosterol attenuates high- fat diet-induced hepatic steatosis in rats by modulating lipid metabolism, inflammation and ER stress pathway. BMC Pharmacol Toxicol. 2023 May 12;24(1):31. doi: 10.1186/s40360-023-00671-0. PMID: 37173727; PMCID: PMC10182633.
Averbukh LD, Turshudzhyan A, Wu DC, Wu GY. Statin-induced Liver Injury Patterns: A Clinical Review. J Clin Transl Hepatol. 2022 Jun 28;10(3):543-552. doi: 10.14218/JCTH.2021.00271. Epub 2022 Jan 10. PMID: 35836753; PMCID: PMC9240239.
Barnard, N. D., Long, M. B., Ferguson, J. M., Flores, R., & Kahleova, H. (2021). Industry Funding and Cholesterol Research: A Systematic Review. American Journal of Lifestyle Medicine, 15(2), 165–172. https://doi.org/10.1177/1559827619892198
Bielohuby, M., Menhofer, D., Kirchner, H., Stoehr, B. J. M., Müller, T. D., Stock, P., Hempel, M., Stemmer, K., Pfluger, P. T., Kienzle, E., Christ, B., Tschöp, M. H., & Bidlingmaier, M. (2011). Induction of ketosis in rats fed low-carbohydrate, high-fat diets depends on the relative abundance of dietary fat and protein. American Journal of Physiology - Endocrinology and Metabolism, 300(1). https://doi.org/10.1152/ajpendo.00478.2010
Bouitbir, J., Sanvee, G. M., Panajatovic, M. V., Singh, F., & Krähenbühl, S. (2020). Mechanisms of statin-associated skeletal muscle-associated symptoms. Pharmacological research, 154, 104201.
Cao, P., Wang, Y., Zhang, C., Sullivan, M. A., Chen, W., Jing, X., Yu, H., Li, F., Wang, Q., Zhou, Z., Wang, Q., Tian, W., Qiu, Z., & Luo, L. (2023). Quercetin ameliorates nonalcoholic fatty liver disease (NAFLD) via the promotion of AMPK-mediated hepatic mitophagy. The Journal of Nutritional Biochemistry, 120, 109414. https://doi.org/https://doi.org/10.1016/j.jnutbio.2023.109414
Castillo, R. L., Herrera, E. A., Gonzalez-Candia, A., Reyes-Farias, M., de la Jara, N., Peña, J. P., & Carrasco-Pozo, C. (2018). Quercetin Prevents Diastolic Dysfunction Induced by a High-Cholesterol Diet: Role of Oxidative Stress and Bioenergetics in Hyperglycemic Rats. Oxidative medicine and cellular longevity, 2018, 7239123.
Chang, Y. C., Lee, T. S., & Chiang, A. N. (2012). Quercetin enhances ABCA1 expression and cholesterol efflux through a p38-dependent pathway in macrophages. Journal of Lipid Research, 53(9), 1840–1850. https://doi.org/10.1194/jlr.M024471
Chambers, K. F., Day, P. E., Aboufarrag, H. T., & Kroon, P. A. (2019). Polyphenol effects on cholesterol metabolism via bile acid biosynthesis, CYP7A1: A review. Nutrients, 11(11), 1–23.
Chen X. Protective effects of quercetin on liver injury induced by ethanol. Pharmacogn Mag. 2010 Apr;6(22):135-41. doi: 10.4103/0973-1296.62900. Epub 2010 May 5. PMID: 20668581; PMCID: PMC2900062.
Eseberri I, Miranda J, Lasa A, Mosqueda-Solís A, González-Manzano S, Santos-Buelga C, Portillo MP. Effects of Quercetin Metabolites on Triglyceride Metabolism of 3T3-L1 Preadipocytes and Mature Adipocytes. Int J Mol Sci. 2019 Jan 11;20(2):264. doi: 10.3390/ijms20020264. PMID: 30641871; PMCID: PMC6359054.
Ghasemi, A., Jeddi, S., & Kashfi, K. (2021). The laboratory rat: Age and body weight matter. EXCLI journal, 20, 1431–1445.
Jeong, S. M., Choi, S., Kim, K., Kim, S. M., Lee, G., Son, J. S., Yun, J. M., & Park, S. M. (2018). Association of change in total cholesterol level with mortality: A population-based study. PLoS ONE, 13(4), 1–11. https://doi.org/10.1371/journal.pone.0196030
Hedayatnia, M., Asadi, Z., Zare-Feyzabadi, R., Yaghooti-Khorasani, M., Ghazizadeh, H., Ghaffarian-Zirak, R., Nosrati-Tirkani, A., Mohammadi-Bajgiran, M., Rohban, M., Sadabadi, F., Rahimi, H. R., Ghalandari, M., Ghaffari, M. S., Yousefi, A., Pouresmaeili, E., Besharatlou, M. R., Moohebati, M., Ferns, G. A., Esmaily, H., & Ghayour-Mobarhan, M. (2020). Dyslipidemia and cardiovascular disease risk among the MASHAD study population. Lipids in Health and Disease, 19(1), 1–11. https://doi.org/10.1186/s12944-020-01204-y
Herrero-Cervera, A., Soehnlein, O., & Kenne, E. (2022). Neutrophils in chronic inflammatory diseases. Cellular & molecular immunology, 19(2), 177–191. https://doi.org/10.1038/s41423-021-00832-3
Hill MF, Bordoni B. Hyperlipidemia. [Updated 2022 Aug 8]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK559182/
Huff T, Boyd B, Jialal I. Physiology, Cholesterol. [Updated 2023 Mar 6]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK470561/
Kathak RR, Sumon AH, Molla NH, Hasan M, Miah R, Tuba HR, Habib A, Ali N. The association between elevated lipid profile and liver enzymes: a study on Bangladeshi adults. Sci Rep. 2022 Feb 2;12(1):1711. doi: 10.1038/s41598-022-05766-y. PMID: 35110625; PMCID: PMC8810783.
Kalra A, Yetiskul E, Wehrle CJ, et al. Physiology, Liver. [Updated 2023 May 1]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK535438/
Klok, M.D., Jakobsdottir, S. and Drent, M.L. (2007), The role of leptin and ghrelin in the regulation of food intake and body weight in humans: a review. Obesity Reviews, 8: 21-34. https://doi.org/10.1111/j.1467-789X.2006.00270.x
Layssol-Lamour, C., Lavabre, T., Braun, J. P., Trumel, C., & Bourgès-Abella, N. (2019). The effects of storage at 4°C and 20°C on the hemograms of C57BL/6 mice and Wistar rats using the IDEXX ProCyte Dx and blood smear evaluations. Veterinary Clinical Pathology, 48(4), 652–667
Lei, X., & Yang, Y. (2020). Vitexin and an HMG-Co A reductase inhibitor prevent the risks of atherosclerosis in high-fat atherogenic diet fed rats. Journal of King Saud University - Science, 32(3), 2088–2095.
Li X, Liu Q, Pan Y, Chen S, Zhao Y, Hu Y. New insights into the role of dietary triglyceride absorption in obesity and metabolic diseases. Front Pharmacol. 2023 Feb 2;14:1097835. doi: 10.3389/fphar.2023.1097835. PMID: 36817150; PMCID: PMC9932209
Linsenmeier, R. A., Beckmann, L., & Dmitriev, A. V. (2020). Intravenous ketamine for long term anesthesia in rats. Heliyon, 6(12), e05686
Mbikay, M., Sirois, F., Simoes, S., Mayne, J., & Chrétien, M. (2014). Quercetin-3-glucoside increases low-density lipoprotein receptor (LDLR) expression, attenuates proprotein convertase subtilisin/kexin 9 (PCSK9) secretion, and stimulates LDL uptake by Huh7 human hepatocytes in culture. FEBS open bio, 4, 755–762. https://doi.org/10.1016/j.fob.2014.08.003
Modica, L. C. M., Flores-Felix, K., Casachahua, L. J. D., Asquith, P., Tschiffely, A., Ciarlone, S., & Ahlers, S. T. (2021). Impact of ketogenic diet and ketone diester supplementation on body weight, blood glucose, and ketones in Sprague Dawley rats fed over two weeks. Food chemistry. Molecular sciences, 3, 100029. https://doi.org/10.1016/j.fochms.2021.100029
Mollazadeh, H., Tavana, E., Fanni, G., Bo, S., Banach, M., Pirro, M., von Haehling, S., Jamialahmadi, T., & Sahebkar, A. (2021). Effects of statins on mitochondrial pathways. Journal of Cachexia, Sarcopenia and Muscle, 12(2), 237–251.
NCD Risk Factor Collaboration (NCD-RisC). (2020). Repositioning of the global epicentre of non-optimal cholesterol. Nature, 582(7810), 73–77.
Oertel, M., Menthena, A., Dabeva, M. D., & Shafritz, D. A. (2006). Cell competition leads to a high level of normal liver reconstitution by transplanted fetal liver stem/progenitor cells. Gastroenterology, 130(2), 507–520. https://doi.org/10.1053/j.gastro.2005.10.049
Papakyriakopoulou, P., Velidakis, N., Khattab, E., Valsami, G., Korakianitis, I., & Kadoglou, N. P. (2022). Potential Pharmaceutical Applications of Quercetin in Cardiovascular Diseases. Pharmaceuticals (Basel, Switzerland), 15(8), 1019.
Parihar, S. P., Guler, R., & Brombacher, F. (2019). Statins: a viable candidate for host-directed therapy against infectious diseases. Nature Reviews Immunology, 19(2), 104–117. https://doi.org/10.1038/s41577-018-0094-3
Pehlivanović Kelle, B., Ćesić, A. K., Čustović, S., Ćosović, E., Lagumdžija, D., Jordamović, N., & Kusturica, J. (2024). Improvement of a diet-induced model of hyperlipidemia in Wistar rats: Assessment of biochemical parameters, the thickness of the abdominal aorta and liver histology. Journal of King Saud University - Science, 36(2), 103068. https://doi.org/https://doi.org/10.1016/j.jksus.2023.103068
PERKI. (2022). Panduan Prevensi Penyakit Kardiovaskular Aterosklerosis. Centra Communication
PERKI. (2022). Panduan Tatalaksana Dislipidemia. Centra Communication
Povero D, Feldstein AE. Novel Molecular Mechanisms in the Development of Non-Alcoholic Steatohepatitis. Diabetes Metab J. 2016 Feb;40(1):1-11. doi: 10.4093/dmj.2016.40.1.1. PMID: 26912150; PMCID: PMC4768045.
Rahmadi, Mahardian, Suasana, Dian, Lailis, Silvy Restuning, Ratri, Dinda Monika Nusantara and Ardianto, Chrismawan. "The effects of quercetin on nicotine-induced reward effects in mice" Journal of Basic and Clinical Physiology and Pharmacology, vol. 32, no. 4, 2021, pp. 327-333. https://doi.org/10.1515/jbcpp-2020-0418
Rodrigues G, Moreira AJ, Bona S, Schemitt E, Marroni CA, Di Naso FC, Dias AS, Pires TR, Picada JN, Marroni NP. Simvastatin Reduces Hepatic Oxidative Stress and Endoplasmic Reticulum Stress in Nonalcoholic Steatohepatitis Experimental Model. Oxid Med Cell Longev. 2019 Jun 18;2019:3201873. doi: 10.1155/2019/3201873. PMID: 31316716; PMCID: PMC6604429.
Seeree P, Janvilisri T, Kangsamaksin T, Tohtong R, Kumkate S. Downregulation of ABCA1 and ABCG1 transporters by simvastatin in cholangiocarcinoma cells. Oncol Lett. 2019 Nov;18(5):5173-5184. doi: 10.3892/ol.2019.10874. Epub 2019 Sep 17. PMID: 31612028; PMCID: PMC6781495.
Shi, Q., Chen, J., Zou, X., & Tang, X. (2022). Intracellular Cholesterol Synthesis and Transport. Frontiers in Cell and Developmental Biology, 10(March), 1–12. https://doi.org/10.3389/fcell.2022.819281
Udomkasemsab, A., & Prangthip, P. (2018). High fat diet for induced dyslipidemia and cardiac pathological alterations in Wistar rats compared to Sprague Dawley rats. Clinica e investigacion en arteriosclerosis : publicacion oficial de la Sociedad Espanola de Arteriosclerosis, 31(2), 56–62.
Wang, N., & Tall, A. R. (2003). Regulation and Mechanisms of ATP-Binding Cassette Transporter A1-Mediated Cellular Cholesterol Efflux. Arteriosclerosis, Thrombosis, and Vascular Biology, 23(7), 1178–1184. https://doi.org/10.1161/01.ATV.0000075912.83860.26
Wang, D., Yang, Y., Lei, Y., Tzvetkov, N. T., Liu, X., Kan Yeung, A. W., Xu, S., & Atanasov, A. G. (2019). Targeting foam cell formation in atherosclerosis: Therapeutic potential of natural products. Pharmacological Reviews, 71(4), 596–670
Wang, M., Wang, B., Wang, S., Lu, H., Wu, H., Ding, M., Ying, L., Mao, Y., & Li, Y. (2021). Effect of Quercetin on Lipids Metabolism Through Modulating the Gut Microbial and AMPK/PPAR Signaling Pathway in Broilers. Frontiers in Cell and Developmental Biology, 9(February), 1–11.
Wang Y, Li Z, He J, Zhao Y. Quercetin Regulates Lipid Metabolism and Fat Accumulation by Regulating Inflammatory Responses and Glycometabolism Pathways: A Review. Nutrients. 2024; 16(8):1102. https://doi.org/10.3390/nu16081102
Ward, N. C., Watts, G. F., & Eckel, R. H. (2019). Statin Toxicity: Mechanistic Insights and Clinical Implications. Circulation Research, 124(2), 328–350.
Xia, J.; Wang, Z.; Yu, P.; Yan, X.; Zhao, J.; Zhang, G.; Gong, D.; Zeng, Z. (2024). Effect of Different Medium-Chain Triglycerides on Glucose Metabolism in High-Fat-Diet Induced Obese Rats. Foods 2024, 13, 241. https://doi.org/10.3390/foods13020241
Yi, S. W., Yi, J. J., & Ohrr, H. (2019). Total cholesterol and all-cause mortality by sex and age: a prospective cohort study among 12.8 million adults. Scientific Reports, 9(1), 1–10. https://doi.org/10.1038/s41598-018-38461-y
Zhang, M., Xie, Z., Gao, W., Pu, L., Wei, J., & Guo, C. (2016). Quercetin regulates hepatic cholesterol metabolism by promoting cholesterol-to-bile acid conversion and cholesterol efflux in rats. Nutrition Research, 36(3), 271–279.
Zhang, X., Xing, L., Jia, X., Pang, X., Xiang, Q., Zhao, X., Ma, L., Liu, Z., Hu, K., Wang, Z., & Cui, Y. (2020). Comparative Lipid-Lowering/Increasing Efficacy of 7 Statins in Patients with Dyslipidemia, Cardiovascular Diseases, or Diabetes Mellitus: Systematic Review and Network Meta-Analyses of 50 Randomized Controlled Trials. Cardiovascular therapeutics, 2020, 3987065.
Copyright (c) 2024 JURNAL FARMASI DAN ILMU KEFARMASIAN INDONESIA
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
1. The copyright of this journal belongs to the Editorial Board and Journal Manager with the author's knowledge, while the moral right of the publication belong to the author.
2. The formal legal aspect of journal publication accessibility refers to the Creative Commons Attribution-Non-Commercial-Share Alike (CC BY-NC-SA), which implies that the publication can be used for non-commercial purposes in its original form.
3. Every publication (print/electronic) is open access for educational, research, and library purposes. In addition to the objectives mentioned above, the editorial board is not responsible for copyright infringement