Pre-treatment of Lobster Shell Using Hydrochloric Acid for Nanochitosan Production
Downloads
Lobster shells are a by-product that can be used as a raw material for making chitin and chitosan. However, lobster shells contain a high amount of minerals that cover the chitin polymer on the shell. This chitin can be converted into chitosan by deacetylation process. Efforts that can be made to increase the efficiency of the chitosan extraction process from lobster shells are by pre-treatment using hydrochloric acid. The purpose of this study was to determine the pre-treatment time of lobster shells with hydrochloric acid and to produce nanochitosan from lobster shells. The results of this study indicate that the pretreatment time has a significant effect on the yield value of chitosan. The highest yield of chitosan was produced from the acid pre-treatment with a soaking time of 120 hours with a value of 15,6%. The quality of lobster chitosan from the best treatment has met the quality requirements based on SNI. Nanochitosan was successfully synthesized by ionic gelation method with a particle size of 357,76 nm and spherical shape based on SEM photos. Lobster nanochitosan has the potential to be applied in various fields, such as food, agriculture,and biomedical.
Avadi, M. R., Sadeghi, A. M. M., Mohammadpour, N., Abedin, S., Atyabi, F., Dinarvand, R., & Rafiee-Tehragni, M. (2010). Preparation and characterization of insulin nanoparticles using chitosan and arabic gum with ionic gelation method. Nanomedicine: Nanotechnology, Biology and Medicine, 6(1):58-63. DOI: 10.1016/j.nano.2009.04.007.
BSN [Badan Standardisasi Nasional]. (2013a). Kitin - syarat mutu dan pengolahan.SNI 7949: 2013. Jakarta: Badan Standardisasi Nasional (BSN).
BSN [Badan Standardisasi Nasional]. (2013b). Kitosan - syarat mutu dan pengolahan. SNI 7949: 2013. Jakarta: Badan Standardisasi Nasional (BSN).
Chang, R. (2005). Kimia dasar: Konsep-konsep inti (Jilid 2). Jakarta: Penerbit Erlangga.
Gustiningtyas, A., Setyaningsih, I., & Hardiningtyas, S. D. (2020). Improvement stability of phycocyanin from Spirulina platensis encapsulated by water soluble chitosan nanoparticles. IOP Conf Series: Earth and Environmental Science, 414:(2020) 012005. DOI: 10.1088/1755-1315/414/1/012005.
Hardiningtyas, S. D., Bahri, D. F., & Suptijah, P. (2022a). Aktivitas antimikroba nanokitosan cangkang udang sebagai sediaan pembersih tangan. Journal of Marine and Coastal Science, 11(1):1-8
Hardiningtyas, S. D., Putri, F. A., & Setyaningsih, I. (2022b). Antibacterial activity of ethanolic Spirulina platensis extract-water soluble chitosan nanoparticles. IOP Conf Series: Earth and Environmental Science, 1033:(2022) 012053, DOI: 10.1088/1755-1315/1033/1/012053.
Janes, K. A., & Alonso, M. J. (2003). Depolimerized chitosan nanoparticles for protein delivery: Preparation and characterization. Journal of Applied Polymer Science, 88(12):2769-2776. DOI: 10.1002/app.12016.
Kementerian Kelautan dan Perikanan [KKP]. (2023). Data produksi lobster. https://statistik.kkp.go.id/
Mergelsberg, S. T., Ulrich, R. N., Xiao, S., & Dove, P. M. (2019). Composition systematics in the exoskeleton of the American Lobster, Homarus americanus and implications for Malacostraca. Frontiers in Earth Science, 7:69. DOI: 10.3389/feart.2019.00069.
Mursida, M., Tasir, T., & Sahriawati, S. (2018). Efektifitas larutan alkali pada proses deasetilasi dari berbagai bahan baku kitosan. Jurnal Pengolahan Hasil Perikanan Indonesia, 21(2):356-366. DOI: 10.17844/jphpi.v21i2.23091.
Oyatogun, G. M., Esan, T. A., Akpan, E. I., Adeosun, S. O., Popoola, A. P. I., Imasogie, B. I., Soboyejo, W. O., Afonja, A. A., Ibitoye, S.A., Abere, V. D., Oyatogun, A. O., Oluwasegun, K. M., Akinwole, I. E., Akinluwade, K. J. (2020). Chitin, chitosan, marine to market. In Gopi, S., Thomas, S., Pius, A. (Ed.), Handbook of chitin and chitosan. (pp. 341-381). Amsterdam: Elsevier. DOI: 10.1016/b978-0-12-817970-3.00011-0.
Pakizeh, M., Moradi, A., & Ghassemi, T. (2021). Chemical extraction and modification of chitin and chitosan from shrimp shells. European Polymer Journal, 159(2021):110709. DOI: 10.1016/J.EURPOLYMJ.2021.110709.
Pari, R. F., Mayangsari, D., & Hardiningtyas, S. D. (2022). Depolimerisasi kitosan dari cangkang udang dengan enzim papain dan iradiasi sinar ultraviolet. Jurnal Pengolahan Hasil Perikanan Indonesia, 25(1):118-131. DOI: 10.17844/jphpi.v25i1.40311.
Percot, A., Viton, C., & Domard, A. (2003). Characterization of shrimp shell deproteinization. Biomacromolecules, 4(5):1380-1385. DOI: 10.1021/ bm034115h.
Rachmania, D. (2011). Karakteristik nanokitosan cangkang udang vananmei (Litopenaes vannamei) dengan metode gelasi ionik [skripsi]. Bogor: Fakultas Perikanan dan Ilmu Kelautan, Institut Pertanian Bogor.
Roberts, G. A. F. (1992). Chitin chemistry (1st ed). London: Macmillan.
Roer, R., & Dillaman, R. (1984). The structure and calcification of the crustacean cuticle. American Zoologist, 24:893-909.
Sreekumar, S., Goycoolea, F. M., Moerschbacher, B. M., & Rivera-Rodriguez, G. R. (2018). Parameters influencing the size of chitosan-TPP nano-and microparticles. Scientific Reports, 8(1):1-11. Suptijah, P., Jacoeb, A. M., & Deviyanti, N. (2012). Karakterisasi dan bioavailabilitas nanokalsium cangkang udang vannamei (Litopenaeus vannamei). Jurnal Akuatika, 3(1):63-73.
Suptijah, P., Jacoeb, A. M., & Rachmania, D. (2011). Karakterisasi nano kitosan cangkang udang vannamei (Litopenaeus vannamei) dengan metode gelasi ionik. Jurnal Pengolahan Hasil Perikanan Indonesia, 14(2):78-84.
Xu, W., Mohan, A., Pitts, N. L., Udenigwe, C., & Mason, B. (2020). Bile acid-binding capacity of lobster shell-derived chitin, chitosan and chitooligosaccharides. Food Bioscience, 33(2020):100476. DOI: 10.1016/j.fbio.2019.100476.
Copyright (c) 2023 Journal of Marine and Coastal Science
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.