Potency of Cellulolytic Bacteria in Ulva lactuca from Ujung Genteng Beach, Sukabumi, Indonesia
Downloads
Fishery Ulva lactuca is a potential green seaweed species that causes green tides and has not been utilized. U. lactuca has the potency to attract cellulolytic bacteria due to its high carbohydrate content. U. lactuca is commonly found on the southern seacoast of Java Island, one of which is Ujung Genteng Beach, Sukabumi, Indonesia. In this research, we investigated the potential of cellulolytic bacteria from U. lactuca. Sources of bacteria are coming from the environment, the surface of the seaweed, and inside the seaweed (endophytes). To be able to determine the origin of the potential bacteria, the total plate count (TPC) was calculated with treatment without washing, washing with distilled water, and washing with a combination of distilled water and alcohol. From these bacteria, cellulolytic activity was tested using CMC media and morphological characterization. The most bacteria were found in the treatment without washing, as much as 7.48 Log Cfu/ml. The washing process reduced the TPC to 5.88 and 5.7 Log Cfu/ml in the treatment of washing with distilled water and washing with a combination of distilled water and alcohol, so that endophytic bacteria were obtained. The bacterial isolate with the highest cellulolytic potential was UW 1(1)1 5A1 from the non-washing treatment with a cellulolytic index of 2.25. These Gram-positive bacteria were in the form of filamentous lobates with a matte cream color with cocci-shaped cells. Meanwhile, the potential endophytic bacteria were Gram-positive coccus bacteria UW 3(1)1.2 with a cellulolytic index of 0.85. Both isolates have the potency to degrade cellulose.
Annamalai, N., Rajeswari, M. V., Elayaraja, S., & Balasubramanian, T. (2013). Thermostable, haloalkaline cellulase from Bacillus halodurans CAS 1 by conversion of lignocellulosic wastes. Carbohydrate Polymers, 94:409-415.
Behera, B. C., Sethi, B. K., Mishra, R. R., Dutta, S. K., & Thatoi, H. N. (2017).
Microbial cellulases - Diversity & biotechnology with reference to mangrove environment: A review. Journal of Genetic Engineering and Biotechnology, 15(1):197-210
Bhat, M. K., & Bhat, S. (1997). Cellulose degrading enzymes and their potential industrial applications. Biotechnology Advances, 15:583-620.
Chantarasiri, A. (2015). Aquatic Bacillus cereus JD0404 isolated from the muddy sediments of mangrove swamps in Thailand and characterization of its cellulolytic activity. Egyptian Journal of Aquatic Research, 41(3):257-264.
Chevassus-au-Louis, B., Andral, B., Femenias, A., & Buvier, M. (2012). Bilan des Connaissances scientifiques sur Les Causes de Prolifération de Macroalgues Vertes. Conseil Général de L'environnement et du Développement Durable; Paris, France: Rapport Pour Le Gouvernement Français 2012. Report No.: CGEDD 007942-01 et CGAAER 11128.
Dominguez, H., & Loret, E. P. (2019). Ulva lactuca, a source of troubles and potential riches. Marine Drugs, 17(6):357.
Jiang, H., Gong, J., Lou, W., & Zou, D. (2019) Photosynthetic behaviors in response to intertidal zone and algal mat density in Ulva lactuca (Chlorophyta) along the coast of Nan'ao Island, Shantou, China. Environmental Science and Pollution Research, 26:13346-13353.
Kidgell J. T., Magnusson M., de Nys R., & Glasson C. R. K. (2019). Ulvan: A systematic review of extraction, composition and function. Algal Research, 39(3):1-20.
Mai-Prochnow, A., Clauson, M., Hong, J. & Murphy A. B. (2016). Gram positive and Gram negative bacteria differ in their sensitivity to cold plasma. Scientific Reports, 6:38610.
Meryandini, A., Widosari, W., Maranatha, B., Sunarti, T. C., Rachmania N., & Satria, H. (2009). Isolasi bakteri selulolitik dan karakterisasi enzimnya. Makara. Sains, 13(1):33-38.
Mulyasari, Melati, I., & Sunarno, M. T. D. (2015) Isolasi, seleksi, dan identifikasi bakteri selulolitik dari rumput laut Turbinaria sp. dan Sargassum sp. sebagai kandidat pendegradasi serat kasar pakan ikan. Jurnal Riset Akuakultur, 10(1):51-60.
[MRP] Market Research Reports. (2023) Global cellulolytic enzymes market growth 2023-2029. (https://www.marketresearchreports.com/lpi/global-cellulolytic-enzymes-market-growth-2023-2029). Diakses 5 Juni 2023
Narra, M., Dixit, G., Divecha, J., Madamwar, D., & Shah, A. R. (2012). Production of cellulases by solid state fermentation with Aspergillus terreus and enzymatic hydrolysis of mild alkali-treated rice straw. Bioresource Technology, 121:355-361.
Polikovsky, M., Califano, G., Dunger, N., Wichard, T., & Golberg, A. (2020). Engineering bacteria-seaweed symbioses for modulating the photosynthate content of Ulva (Chlorophyta): Significant for the feedstock of bioethanol production. Algal Research, 49:101945.
Reddy, K. V., Vijayalashmi, T., Ranjit, P., & Raju, M. N. (2017) Characterization of some efficient cellulase producing bacteria isolated from pulp and paper mill effluent contaminated soil. Biological and Applied Sciences Brazilian Archives of Biology and Technology, 60:1-6.
Sadhu, S., & Maiti, T. K. (2013) Cellulase production by bacteria: A review. British Microbiology Research Journal, 3(3):235-258.
Saini, J. K., Saini, R., & Tewari, L. (2015). Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: Concepts and recent developments. 3 Biotech, 5(4):337-353.
Sun, J., Rutherford, S. T., Silhavy, T. J. & Huang, K. C. (2022). Physical properties of the bacterial outer membrane. Nature Reviews Microbiology, 20:236-248.
Robson, L. M., & Chambliss, G. H. (1989). Cellulases of bacterial origin. Enzyme and Microbial Technology, 11(10):626-644.
Tajuddin, N., Rizman-Idid, M., Convey, P., & Alias, S. A. (2018). Thermal adaptation in a marine-derived tropical strain of Fusarium equiseti and polar strains of Pseudogymnoascus spp. under different nutrient sources. Botanica Marina, 61(1):9-20.
Tang, T., Effiong, K., Hu, J., Li, C., & Xiao, X. (2021). Chemical prevention and control of the green tide and fouling organism ulva: Key chemicals, mechanisms, and applications. Frontiers in Marine Science, 8:618950.
Trivedi, N., Gupta, V., Kumar, M., Kumari, P., Reddy, C., & Jha, B. (2011a). An alkali-halotolerant cellulase from Bacillus flexus isolated from green seaweed Ulva lactuca. Carbohydrate Polymers, 83(2):891-897.
Trivedi, N., Gupta, V., Kumar, M., Kumari, P., Reddy, C., & Jha, B. (2011b). Solvent tolerant marine bacterium Bacillus aquimaris secreting organic solvent stable alkaline cellulase. Chemosphere, 83(5):706-712.
Trivedi, N., Gupta, V., Reddy, C.,R.,K., & Jha, B. (2013a). Enzymatic hydrolysis and production of bioethanol from common macrophytic green alga Ulva fasciata Delile. Bioresource Technology, 150:106-112.
Trivedi, N., Gupta, V., Reddy, C. R. K., & Jha, B. (2013b). Detection of ionic liquid stable cellulase produced by the marine bacterium Pseudoalteromonas sp. isolated from brown alga Sargassum polycystum C. Agardh. Bioresource Technology, 132:313-319.
Trivedi, N., Reddy, C. R. K., & Lali, A. M. (2016) Marine microbes as a potential source of cellulolytic enzymes. Advances in Food and Nutrition Research, 79:27-41.
Yu, H. Y., & Li, X. (2015). Alkali-stable cellulase from a halophilic isolate, Gracilibacillus sp. SK1 and its application in lignocellulosic saccharification for ethanol production. Biomass and Bioenergy, 81:19-25.
Zanolla, M., Carmona, R., Kawai, H., Stengel, D. B., & Altamirano, M. (2019). Role of thermal photosynthetic plasticity in the dispersal and settlement of two global green tide formers: Ulva pertusa and U.ohnoi. Marine Biology. 166:1-12.
Copyright (c) 2023 Journal of Marine and Coastal Science
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.