Geographic Information System on Cases of Dengue Hemorrhagic Fever in Sidoarjo Regency in 2019
Background: The development of information technology in the health sector is becoming increasingly complex and diverse, one of which is the Geographic Information System (GIS). GIS in the health sector is widely known as a surveillance tool, which can be used to assess health risks and threats in the community; know the spread of disease and outbreak investigations; planning and implementing health service programs, as well as evaluation and monitoring. In 2019, 367 cases of Dengue Hemorrhagic Fever (DHF) were found in Sidoarjo Regency, where the number of cases found has increased from the previous year.
Objectives: This study aims to describe the distribution of DHF case data in each region and to analyze the factors that influence the number of DHF cases in Sidoarjo Regency in 2019.
Methods: This study used a cross-sectional design. This study population were all sub-districts in Sidoarjo Regency in 2019, which were 18 sub-districts. The sample was the total population. The dependent variable was the number of DHF cases in Sidoarjo District in 2019, while the independent variables were population density per km2, percentage of drinking water facilities that meet health requirements, number of public places that meet health requirements, and number of families with access to healthy latrines. This study used secondary data, namely Sidoarjo District map and Sidoarjo District Health Profile 2019. The analysis used is mapping analysis and multiple linear regression with GeoDa.
Results: The distribution of the highest number of DHF cases was found in Sukodono, Candi, Reinforcement and Taman Subdistricts. The results of the analysis showed that population density had no significant effect on the number of DHF cases (p=0.26206), the percentage of drinking water facilities that met the requirements had a significant effect on the number of DHF cases (p=0.00654), the number of public places that met health requirements had an effect significantly to the number of DHF cases (p=0.04448), and the number of families with proper access to sanitation facilities (healthy latrines) has a significant effect on the number of DHF cases (p=0.03526).
Conclusions: Factors that influence the number of DHF cases are the percentage of drinking water facilities that meet the requirements, the number of public places that meet health requirements, and the number of families with access to healthy latrines. It is expected to modify the investigation technique for finding DHF cases early by utilizing spatial and time data.
A. Arsunan Arsin (2013) Epidemiologi Demam Berdarah Dengue (DBD) Di Indonesia. A. Sade, e. Makassar: Masagena Press.
Arisandi, A., Herdiani, E. T. and Sahriman, S. (2018) ‘Aplikasi Generalized Poisson Regression dalam Mengatasi Overdispersi pada Data Jumlah Penderita Demam Berdarah Dengue', Statistika: Journal of Theoretical Statistics and Its Applications, 18(2), pp. 123–130. doi: 10.29313/jstat.v18i2.4542.
Assagaff, F. (2021) ‘Gambaran Sarana Sanitasi di Kawasan Pesisir (Studi di RT 03 Dusun Hurnala 1 Desa Tulehu Kecamatan Salahutu)', Global Health Science, 2(2), pp. 149–154.
Dari, S., Nuddin, A. and Rusman, A. D. P. (2020) ‘Profil Kepadatan Hunian dan Mobilitas Penduduk Terhadap Prevalensi Demam Berdarah Dengue di Wilayah Kerja Puskesmas Cempae Kota Parepare', Jurnal Ilmiah Manusia dan Kesehatan, 3(2), pp. 155–162. Available at: https://jurnal.umpar.ac.id.
Dinkes Jatim (2020) ‘Profil Kesehatan Provinsi Jawa Timur Tahun 2019'.
Dinkes Sidoarjo (2020) ‘Profil Kesehatan Kabupaten Sidoarjo 2019'. Available at: http://dinkes.sidoarjokab.go.id/2020/08/26/profil-kesehatan-kabupaten-sidoarjo-tahun-2019/.
Fatati, I. F., Wijayanto, H. and Soleh, A. M. (2017) ‘Analisis Regresi Spasial Dan Pola Penyebaran Pada Kasus Demam Berdarah Dengue (Dbd) Di Provinsi Jawa Tengah', Media Statistika, 10(2), p. 95. doi: 10.14710/medstat.10.2.95-105.
Fauzi, C. (2020) ‘Pengembangan Sistem Informasi Geografis Menggunakan YWDM Dalam Perencanaan Tata Ruang', Jurnal Sains Komputer & Informatika (J-SAKTI, 4(2), pp. 598–607.
Ganinov, I. T. and Huda, S. (2019) ‘Penerapan Sistem Informasi Geografis Faktor Risiko Penyakit Leptospirosis', Jurnal Ilmiah Ilmu Kesehatan: Wawasan Kesehatan, 5(2), pp. 280–284. doi: 10.33485/jiik-wk.v5i2.143.
Kemenkes RI (2020a) ‘Peraturan Menteri Kesehatan Republik Indonesia Nomor 21 Tahun 2020 Tentang Rencana Strategis Kementerian Kesehatan Tahun 2020-2024'.
Kemenkes RI (2020b) ‘Profil Kesehatan Indonesia Tahun 2019'. Jakarta: Kementerian Kesehatan RI.
Mukono, H. J. (2006) Prinsip Dasar Kesehatan Lingkungan Edisi Kedua. Surabaya: Airlangga University Press.
Putri, S. I. and Akbar, P. S. (2019) Sistem Informasi Kesehatan. Uwais Inspirasi Indonesia.
Qamila, N. and Krama, A. V. (2018) ‘Difusi dan Pola Spasial Sebaran Penyakit Demam Berdarah Dengue (DBD) Di Kota Bandar Lampung', KESMARS: Jurnal Kesehatan Masyarakat, Manajemen dan Administrasi Rumah Sakit, 1(1), pp. 87–95. doi: 10.31539/kesmars.v1i1.192.
Soontornpipit, P. et al. (2016) ‘Development of the Electronic Surveillance Monitoring System on Web Applications', Procedia Computer Science, 86(March), pp. 244–247. doi: 10.1016/j.procs.2016.05.110.
Sutrianti, S. (2018) Penggunaan Model Geographically Weighted Poisson Regression untuk Melihat Faktor-faktor yang Mempengaruhi Penyebaran Penyakit DBD. UPT Perpustakaan UNM.
WHO (2021) Dengue and Severe Dengue. Available at: https://www.who.int/news-room/fact-sheets/detail/dengue-and-severedengue.
WHO (2022) Dengue and severe dengue. Available at: https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue (Accessed: 22 June 2022).
Copyright (c) 2023 Rafdi Ghazi Iriyanto Putra
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Media Gizi Kesmas by Unair is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
1. The journal allows the author(s) to hold the copyright and to retain the publishing right of the article without restrictions.
2. The legal formal aspect of journal publication accessibility refers to Creative Commons Attribution-Share-Alike (CC BY-SA).
3. The Creative Commons Attribution-Share-Alike (CC BY-SA) license allows re-distribution and re-use of a licensed work on the conditions that the creator is appropriately credited and that any derivative work is made available under "the same, similar or a compatible license”. Other than the conditions mentioned above, the editorial board is not responsible for copyright violations.