Geographic Information System on Cases of Dengue Hemorrhagic Fever in Kediri Regency in 2019
Downloads
Background: Prevention of the spread of disease needs to be through various steps, one of which is to know the potential for the spread of the disease in question. One of the dangerous diseases that still occurs in high numbers in Indonesia is dengue hemorrhagic fever (DHF). There are still various deficiencies in DHF control, including an information guide system regarding DHF cases that has not been effective and has not accurately represented the distribution of DHF in various regions. In an effort to obtain geographic information related to the distribution of DHF cases, information technology can be utilized, namely the Geographic Information System (GIS).
Objectives: To utilize the Geographic Information System in describing the distribution of Dengue Hemorrhagic Fever (DHF) case data and analyzing the factors that influence the number of DHF cases in Kediri Regency in 2019.
Methods: This study used a quantitative method with a cross sectional design. The research population includes all sub-districts in Kediri Regency in 2019, namely 26 sub-districts. The research sample used the entire available population. The data source used comes from secondary data, namely in the form of a map of Kediri Regency and the Health Profile of Kediri Regency in 2019.
Results: The results of further testing related to the relationship between population density and the number of DHF cases did not have a significant effect with a p-value of 0.69076, the distribution variable for the percentage of drinking water facilities that met the requirements did not have a significant effect on the number of DHF cases with a p-value of 0.90729, the variable distribution of the number of public places meeting health requirements has no significant effect on the number of DHF cases with a p-value of 0.54618, and the variable distribution of the number of families with access to healthy latrines has a significant effect on the number of DHF cases with a p-value of 0.00013 .
Conclusion: The population density variable, the distribution variable for the percentage of drinking water facilities that meet the requirements, and the distribution variable for the number of public places meeting health requirements have no significant effect on the number of DHF cases that occur in Kediri Regency in 2019. Meanwhile, the variable distribution of the number of families with access to healthy latrines has a significant effect on the number of DHF cases in Kediri Regency in 2019.
Arisandi, A., Herdiani, E. T., & Sahriman, S. (2018). Aplikasi generalized poisson regression dalam mengatasi oveerdispersi pada data jumlah penderita demam berdarah dengue. Statistika, 18(2), 123-130.
Bahtiar, N. D., & Sifaunajah, A. (2018). Perancangan sistem informasi geografis penyebaran penyakit demam berdarah dengue di wilayah Jombang. SAINTEKBU, 10(1), 83-91.
Dompas, B. E., Sumampouw, O. J., & Umboh, J. M. (2020). Apakah Faktor Lingkungan Fisik Rumah Berhubungan dengan kejadian demam berdarah dengue? Journal of Public Health and Community Medicine, 1(2), 11-15.
Faldy, R. (2015). Pemetaan kasus demam berdarah dengue di Kabupaten Minahasa Utara. Jurnal Kedokteran KOmunitas dan Tropik, 3(2), 73-81.
Fatati, I. F., Wijayanto, H., & Soleh, A. M. (2017). Analisis regresi spasial dan pola penyebaran pada kasus demam berdarah dengue (DBD) di Provinsi Jawa Tengah. Media Statistika, 10(2), 95-105.
Ferial, L., & Wahyuni, N. (2022). Mutu Pelayanan Kesehatan Meningkat dengan Menerapkan Keselamatan Pasien di Puskesmas. Jurnal JOUBAHS, 2(1), 36-46.
Herawati, A., Febrianti, D., Santoso, D., Putra, F. B., Sitorus, G. G., & Tasya, R. A. (2021). Gambaran Aspek Demografi, Lingkungan, dan Perilaku Kesehatan Sebagai Upaya Pencegahan Penyakit Demam Berdarah Dengue di Wilayah Kota Depok Tahun 2021. ISJMHS, 1(3), 76-83.
Mahardika, R. (2021). Relationship Between Health Behavior and the Event of Dengue Heavenly Fever (DHF). Jurnal EduHealth, 12(1), 15-26.
Matini, M. (2019). Incidence of dengue hemorrhagic fever (DHF) in Semarang Coastal Area: Epidemiology descriptive case and bionomic vector. Indonesian Journal of Tropical and Infectious Disease, 7(6), 144-149. doi:https://doi.org/http://dx.doi.org/10.20473/ijtid.v7i6.10389
Mistawati, M., Yasnani, Y., & Lestari, H. (2021). Forecasting prevalence of dengue hemorrhagic fever using ARIMA model in Sulawesi Tenggara Province, Indonesia. Public Health of Indonesia, 7(2), 75-86. doi:https://doi.org/https://doi.org/10.36685/phi.v7i2.411
Pohan, N. R., Wati, N. A., & Nurhadi, M. (2016). Gambaran kepadatan dan tempat potensial perkembangbiakan jentik Aedes sp. di tempat-tempat umum wilayah kerja PUSKESMAS Umbulharjo I Kota Yogyakarta. Jurnal Foemil KesMas Respati, 109-120.
Pongsilurang, C. M. (2015). Pemetaan kasus demam berdarah dengue di Kota Manado. Jurnal Kedokteran komunitas dan tropik, 3(2), 66-72.
Ridwan, N. M., Asmarani, F. L., & Suwarsi, S. (2017). Hubungan tingkat pengetahuan PHBS di rumah tangga dengan pencegahan penyakit DBD di pedukuhan Wonocatur Banguntapan Bantul Yogyakarta. Jurnal Keperawatan Respati Yogyakarta, 4(1), 118-123.
Rizki, M. I., & Ammar, T. (2022). Pemodelan Spatial autoregressice quantile regression pada faktor yang memengaruhi tingkat incident rate demam berdarah dengue di Jawa Barat. Prosiding Seminar Nasional Matematika, Statistika dan Aplikasinya, 312-321.
Shanti, H. D. (2022, 10 17). Kemenkes cata kasus dengue sampai minggu ke-39 2022 capai 94.355. Retrieved from antaranews.com: https://www.antaranews.com/berita/3184081/kemenkes-catat-kasus-dengue-sampai-minggu-ke-39-2022-capai-94355#:~:text=Jakarta%20(ANTARA)%20%2D%20Kementerian%20Kesehatan,dengan%20prediksi%20akan%20terus%20meningkat.
Sukesi, T. W., Mulasari, S. A., & Sulistyawati. (2022). Kepedulian masyarakat terhadap pengendalian demam berdarah dengue (DBD) saat pandemi covid 19 di Indonesia. Jurnal Vektor Penyakit, 16(1), 69-80.
Tizona, A. R., Goejantoro, R., & Wasono. (2017). Pemodelan Geographically Weighted Regression (GWR) dengan fungsi pembobot adaptive kernel bisquare untuk angka kesakitan demam berdarah di Kalimantan Timur tahun 2015. Jurnal Eksponensial, 8(1), 87-94.
Veritawati, I., Nova, S., & Mastra, R. (2020). Sistem informasi pemetaan penyakit demam berdarah berbasis informasi geografis. Journal of Informativs and Advanced Computing, 1(1).
Widi, S. (2022, 8 30). Ada 73.518 Kasus Demam Berdarah Dengue di Indonesia pada 2021. Retrieved from DataIndonesia.id: https://dataindonesia.id/ragam/detail/ada-73518-kasus-demam-berdarah-dengue-di-indonesia-pada-2021
Copyright (c) 2023 Rochma Ashifa Affayani
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Media Gizi Kesmas by Unair is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
1. The journal allows the author(s) to hold the copyright and to retain the publishing right of the article without restrictions.
2. The legal formal aspect of journal publication accessibility refers to Creative Commons Attribution-Share-Alike (CC BY-SA).
3. The Creative Commons Attribution-Share-Alike (CC BY-SA) license allows re-distribution and re-use of a licensed work on the conditions that the creator is appropriately credited and that any derivative work is made available under "the same, similar or a compatible license”. Other than the conditions mentioned above, the editorial board is not responsible for copyright violations.