ARIMA Time Series Analysis for Predicting the Number of New Postpartum Family Planning Participants in East Java
Downloads
Background: Time series forecasting methods are still being used. Time-series analysis was used to analyze the data, considering the time factor. Autoregressive Integrated Moving Average (ARIMA) is a time-series model that does not require a specific pattern in the data. The number of new postpartum family planning (KB) participants in East Java has both increased and decreased.
Objectives: This study aimed to determine the number of new postpartum family planning (KB) participants in East Java.
Methods: This study used non-reactive research methods. The secondary data used were the number of new postpartum family planning participants in East Java between January 2017 and December 2021. The data were obtained from the BKKBN website.
Results: In this study, the ARIMA method produced the best model, namely, ARIMA (1,1,1), with an AR parameter value (1) of 0.413 and an MA parameter value (1) of 0.914. The resulting Mean Square Error (MSE) was 935,384, and the Mean Absolute Percentage Error (MAPE) was 4,671.
Conclusions: The prediction results for the number of new postpartum family planning participants in East Java by 2022 increased every month. In January, there were 14,523 participants, and in December, it increased to 15,127 participants. The family planning program will continue to increase the number of postpartum family planning users.
Anik, R. and Afif, E.M. (2019) ‘Analisis Time Series untuk Menentukan Model Terbaik Produk Songkok Nasional di Kabupaten Gresik', Journal of Chemical Information and Modeling, 53(9), pp. 1689–1699.
Aprilia Nurma, D. (2021) ‘Analisis Faktor Penyebab Penggunaan Kontrasepsi Selama Masa Pandemi Covid-19 Pada Pasangan Usia Subur Di Kecamatan Tebing Tinggi Kabupaten Tanjung Jabung Barat', Jurnal Ilmu Kesehatan Masyarakat, 17(November), p. 9. Available at: https://doi.org/10.19184/ikesma.v0i0.27219.
BKKBN (2017) ‘Peraturan Kepala Badan Kependudukan dan Keluarga Berencana Nasional Nomor 24 Tahun 2017 Tentang Pelayanan Keluarga Berencana Pasca Persalinan dan Pasca Keguguran', Pelayanan Keluarga Berencana Pasca Persalinan dan Keguguran. Badan Kependudukan dan Keluarga Berencana Nasiona, p. 64.
Chatfield, C. (2000) Time-Series Forecasting. second, Urologiia (Moscow, Russia : 1999). second. New York. Available at: http://www.ncbi.nlm.nih.gov/pubmed/16856455.
Disdaldukkb. 2019. Laporan Umpan Balik Hasil Pelaksanaan Sub Sistem Pencatatan dan Pelaporan Pengendalian Lapangan dan Pelayanan Kontrasepsi (Issue 14).
Farosanti, L., Mubarok, H. and Indrianto (2022) ‘Analisa Peramalan Penjualan Alat Kesehatan dan Laboratorium di PT. Tristania Global Indonesia Menggunakan Metode ARIMA', JIMP: Jurnal Informatika Merdeka Pasuruan, 7(2), pp. 14–18. Available at: http://dx.doi.org/10.37438/jimp.v7i1.428.
Indayani, T., & Darsyah, M. Y. 2018. Pemilihan Model Peramalan Terbaik Menggunakan Model Arima dan Winters Untuk Meramalkan Indeks LQ45. Prosiding Seminar Nasional Mahasiswa Unimus, 1, 336–342.
Juliaan, F., & Anggraeni, M. 2016. Penggunaan Kontrasepsi Pada Wanita Pasca Melahirkan Dan Pasca Keguguran, Sdki 2012. Jurnal Kesehatan Reproduksi, 6(2), 107–116. https://doi.org/10.22435/kespro.v6i2.4751.108-116
Kementerian Hukum dan Hak Asasi Manusia, R. (2009) ‘Undang-Undang Republik Indonesia Nomor 36 Tahun 2009'. Jakarta, p. 111. Available at: https://doi.org/10.18860/ling.v5i1.609.
Kementerian Kesehatan RI. 2014. Pedoman Pelayanan Keluarga Berencana Pasca Persalinan di Fasilitas Kesehatan. In Pedoman Pelayanan Keluarga Berencana Pasca Persalinan di Fasilitas Kesehatan (p. 107). Kementrian Kesehatan RI.
Kushartanti, R. and Latifah, M. (2020) ‘Autoregressive Integrated Moving Average (ARIMA) Sebagai Model Peramalan Kasus Demam Berdarah Dengue', Jurnal Kesehatan Lingkungan, 10(2), pp. 76–80. Available at: https://doi.org/10.47718/jkl.v10i2.1165.
Makridakis, S., Wheelwright, S. and Hyndman, R. (1999) Forecasting methods and applications.
Nurfadila, K. and Ilham Aksan (2020) ‘Aplikasi Metode Arima Box-Jenkins Untuk Meramalkan Penggunaan Harian Data Seluler', Journal of Mathematics : Theory and Application, 2(1), pp. 5–10. Available at: https://doi.org/10.31605/jomta.v2i1.749.
Pani Desvina, A., Yuliawati, Rahmadeni, & Yendra, R. 2020. Aplikasi Model ARIMA dalam Memprediksi Jumlah Pasien Penderita Gangguan Jiwa Rawat Inap di RS Jiwa Tampan Pekanbaru. Seminar Nasional Teknologi Informasi, Komunikasi Dan Industri (SNTIKI) 12, SNTIKI, 662–668.
Putri, R.P., Sari, R.D.P. and Ayu, P.R. (2019) ‘Perbandingan Faktor-Faktor yang Mempengaruhi Penggunaan Kontrasepsi Intra Uterine Devices ( IUD ) dan Kontrasepsi Implant pada Wanita Usia Subur di Kecamatan Sukarame Kota Bandarlampung', Majority, 8(2), pp. 120–124. Available at: https://juke.kedokteran.unila.ac.id/index.php/majority/article/viewFile/2458/2409#:~:text=Adapun faktor-faktor yang mempengaruhi,dukungan suami%2C dan pelayanan KB.
Rahayu, W.S., Juwono, P.T. and Soetopo, W. (2019) ‘Analisis Prediksi Debit Sungai Amprong Dengan Model Arima (Autoregressive Integrated Moving Average) Sebagai Dasar Penyusunan Pola Tata Tanam', Jurnal Teknik Pengairan, 10(2), pp. 110–119. Available at: https://doi.org/10.21776/ub.pengairan.2019.010.02.04.
Sigit, N. and Setiyoargo, A. (2020) ‘Analisis Peramalan Jumlah Penderita Hipertensi pada Lansia di Kabupaten Malang Menggunakan Metode Arima Box-Jenkins', Jurnal Rekam Medis dan Informasi Kesehatan, 3(1), pp. 7–12. Available at: https://doi.org/10.31983/jrmik.v3i1.5578.
Silvia, D., Ratnasari, F. and Winarni, L.M. (2022) ‘Literature Review: Pemberian Konseling Keluarga Berencana terhadap Pengambilan Keputusan Akseptor Memilih Keluarga Berencana Pasca Persalinan', COMSERVA Indonesian Jurnal of Community Services and Development, 1(12), pp. 1205–1213. Available at: https://doi.org/10.36418/comserva.v1i12.195.
Sitorus, F.M. and Siahaan, J.M. (2018) ‘Pelayanan Keluarga Berencana Pasca Persalinan Dalam Upaya Mendukung Percepatan Penurunan Angka Kematian Ibu', Midwifery Journal: Jurnal Kebidanan UM. Mataram, 3(2), p. 114. Available at: https://doi.org/10.31764/mj.v3i2.505.
Trisnawati, O., & Prastuti, M. 2021. Peramalan Curah Hujan di Stasiun Juanda Menggunakan Metode ARIMA Box-Jenkins dan Radial Basis Function Neural Network. Jurnal Sains Dan Seni ITS, 11(1). https://doi.org/10.12962/j23373520.v11i1.63165
Wilfredo Palma. 2015. Time Series Analysis (G. M. Balding,David J. Cressie, Noel A.C . Fitzmaurice (ed.); First Edit). John Wiley & Sons, Inc.
Wei, W.W.S. (2006) Time Series Analysis Univariate and Multivariate Methods. second, Pearson Addison Wesley. second. Edited by D. Lynch. New York: Greg Tobin. Available at: https://doi.org/10.1201/b11459-9.
Yunita, T. (2020) ‘Peramalan Jumlah Penggunaan Kuota Internet Menggunakan Metode Autoregressive Integrated Moving Average (ARIMA)', Journal of Mathematics : Theory and Application, 1(2), pp. 16–22. Available at: https://doi.org/10.31605/jomta.v2i1.777.
Copyright (c) 2024 Rohyatul Fadhila Diningestu, Mahmudah Mahmudah
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Media Gizi Kesmas by Unair is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
1. The journal allows the author(s) to hold the copyright and to retain the publishing right of the article without restrictions.
2. The legal formal aspect of journal publication accessibility refers to Creative Commons Attribution-Share-Alike (CC BY-SA).
3. The Creative Commons Attribution-Share-Alike (CC BY-SA) license allows re-distribution and re-use of a licensed work on the conditions that the creator is appropriately credited and that any derivative work is made available under "the same, similar or a compatible license”. Other than the conditions mentioned above, the editorial board is not responsible for copyright violations.