The effect of antimicrobial peptide gel RISE-AP12 on decreasing neutrophil and enhancing macrophage in nicotine-periodontitis Wistar rat model
Downloads
Background: Periodontitis, an inflammation that causes alveolar bone destruction, is caused by bacteria and aggravated by nicotine exposure and is therefore a disease that many smokers have. Antibacterial agents are essential for the rejuvenation process in periodontitis treatment; antimicrobial peptide (AMP) gel is a broad-spectrum antibacterial agent that is hardly cause bacteria resistance. Purpose: The objective of this study is to determine the effect of AMP gel administration on neutrophil and macrophage counts on periodontitis regeneration in nicotine-exposed rats. Methods: 24 Wistar rats were separated into four groups: nicotineexposed, non-nicotine-exposed, treatment and control. Rats with periodontitis were given AMP in the gingival line on days 1, 3 and 7 after having their mandibular central incisors ligated for 14 days to induce periodontitis. After AMP treatment, two groups of rats were collected randomly. Each group were decapitated, followed by treatment and histological examination with hematoxylin-eosin staining in the pathology laboratory to view neutrophils and macrophages. The asymmetric Kruskal Wallis test was used to analyse the data. Results: In mice treated with AMP, neutrophil counts on day 3 were lower than in distilled water (Aquadest) controls. The number of macrophages on day 3 was higher than that of the Aquadest control. Kruskal Wallis test results for neutrophils were p = 0.017 and for macrophages p = 0.01, where both test results had p < 0.05, there were significant differences between the neutrophil and macrophage groups. Conclusion: The administration of AMP effects on decreasing the number of neutrophils and enhancing macrophages in the periodontitis regeneration. in nicotine-exposed rats.
Downloads
Loos BG, Needleman I. Endpoints of active periodontal therapy. J Clin Periodontol. 2020; 47(Suppl 2): 61–71. doi: https://doi.org/10.1111/jcpe.13253
Kanmaz M, Kanmaz B, Buduneli N. Periodontal treatment outcomes in smokers: A narrative review. Tob Induc Dis. 2021; 19: 77. doi: https://doi.org/10.18332/tid/142106
Chrysanthopoulou A, Mitroulis I, Apostolidou E, Arelaki S, Mikroulis D, Konstantinidis T, Sivridis E, Koffa M, Giatromanolaki A, Boumpas DT, Ritis K, Kambas K. Neutrophil extracellular traps promote differentiation and function of fibroblasts. J Pathol. 2014; 233(3): 294–307. doi: https://doi.org/10.1002/path.4359
Cortés-Vieyra R, Rosales C, Uribe-Querol E. Neutrophil functions in periodontal homeostasis. J Immunol Res. 2016; 2016: 1396106. doi: https://doi.org/10.1155/2016/1396106
Kesim S, Kılıc D, Ozdamar S, Liman N. Effect of smoking on attachment of human periodontal ligament cells to periodontally involved root surfaces following enamel matrix derivative application. Biotechnol Biotechnol Equip. 2012; 26(5): 3215–9. doi: https://doi.org/10.5504/BBEQ.2012.0082
Hajishengallis G. Periodontitis: from microbial immune subversion to systemic inflammation. Nat Rev Immunol. 2015; 15(1): 30–44. doi: https://doi.org/10.1038/nri3785
Panpradit N, Nilmoje T, Kasetsuwan J, Sangkhamanee SS, Surarit R. Effect of nicotine and Porphyromonas gingivalis on the differentiation properties of periodontal ligament fibroblasts. Eur J Dent. 2021; 15(4): 727–32. doi: https://doi.org/10.1055/s-0041-1729678
Lei J, Sun L, Huang S, Zhu C, Li P, He J, Mackey V, Coy DH, He Q. The antimicrobial peptides and their potential clinical applications. Am J Transl Res. 2019; 11(7): 3919–31. pubmed: https://pubmed.ncbi.nlm.nih.gov/31396309/
Mahlapuu M, Håkansson J, Ringstad L, Björn C. Antimicrobial peptides: An emerging category of therapeutic agents. Front Cell Infect Microbiol. 2016; 6: 194. doi: https://doi.org/10.3389/fcimb.2016.00194
Gorr S-U, Abdolhosseini M. Antimicrobial peptides and periodontal disease. J Clin Periodontol. 2011; 38(Suppl 1): 126–41. doi: https://doi.org/10.1111/j.1600-051X.2010.01664.x
Xue C, Li L. Inhibitory effect of antimicrobial peptides RISE-AP12® on Porphyromonas gingivalis. Chinese J Pract Stomatol. 2014; 7(4): 217–20. web: http://www.zgsyz.com/zgsykqk/EN/Y2014/V7/I4/217
Mateescu M, Baixe S, Garnier T, Jierry L, Ball V, Haikel Y, Metz-Boutigue MH, Nardin M, Schaaf P, Etienne O, Lavalle P. Antibacterial peptide-based gel for prevention of medical implanted-device infection. PLoS One. 2015; 10(12): e0145143. doi: https://doi.org/10.1371/journal.pone.0145143
Karatas O, Balci Yuce H, Tulu F, Taskan MM, Gevrek F, Toker H. Evaluation of apoptosis and hypoxia-related factors in gingival tissues of smoker and non-smoker periodontitis patients. J Periodontal Res. 2020; 55(3): 392–9. doi:https://doi.org/10.1111/jre.12723
Krisanaprakornkit S, Khongkhunthian S. The role of antimicrobial peptides in periodontal disease (Part I): an overview of human defensins and cathelicidin. Thai J Periodont. 2010; (1): 33–44. pdf: https://www.thaiperio.org/Files/Name/CONTENT126672876713.pdf
Ionel A, Lucaciu O, Moga M, Buhatel D, Ilea A, Tabaran F, Catoi C, Berce C, Toader S, Campian RS. Periodontal disease induced in Wistar rats - experimental study. Hum Vet Med. 2015; 7(2): 90–5. pdf: http://www.hvm.bioflux.com.ro/docs/2015.90-96.pdf
Kubota M, Yanagita M, Mori K, Hasegawa S, Yamashita M, Yamada S, Kitamura M, Murakami S. The effects of cigarette smoke condensate and nicotine on periodontal tissue in a periodontitis model mouse. PLoS One. 2016; 11(5): e0155594. doi: https://doi.org/10.1371/journal.pone.0155594
Nicu EA, Rijkschroeff P, Wartewig E, Nazmi K, Loos BG. Characterization of oral polymorphonuclear neutrophils in periodontitis patients: a case-control study. BMC Oral Health. 2018; 18(1): 149. doi: https://doi.org/10.1186/s12903-018-0615-2
Dhall S, Alamat R, Castro A, Sarker AH, Mao J-H, Chan A, Hang B, Martins-Green M. Tobacco toxins deposited on surfaces (third hand smoke) impair wound healing. Clin Sci (Lond). 2016; 130(14): 1269–84. doi: https://doi.org/10.1042/CS20160236
Ertugrul AS, Sahin H, Dikilitas A, Alpaslan NZ, Bozoğlan A, Tekin Y. Gingival crevicular fluid levels of human beta-defensin-2 and cathelicidin in smoker and non-smoker patients: a cross-sectional study. J Periodontal Res. 2014; 49(3): 282–9. doi: https://doi.org/10.1111/jre.12105
Novak MJ, Novak KF, Preshaw PM. Smoking and periodontal disease. In: Newman M, Takei H, Klokkevold P, Carranza F, editors. Carranza's clinical periodontology. 11th ed. St. Louis: Saunders Elsevier; 2012. p. 294–303.
Papapanou PN, Sanz M, Buduneli N, Dietrich T, Feres M, Fine DH, Flemmig TF, Garcia R, Giannobile W V, Graziani F, Greenwell H, Herrera D, Kao RT, Kebschull M, Kinane DF, Kirkwood KL, Kocher T, Kornman KS, Kumar PS, Loos BG, Machtei E, Meng H, Mombelli A, Needleman I, Offenbacher S, Seymour GJ, Teles R, Tonetti MS. Periodontitis: Consensus report of workgroup 2 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions. J Periodontol. 2018; 89(Suppl 1): S173–82. doi: https://doi.org/10.1002/JPER.17-0721
Reinke JM, Sorg H. Wound repair and regeneration. Eur Surg Res. 2012; 49(1): 35–43. doi: https://doi.org/10.1159/000339613
Lin Z, Wu T, Wang W, Li B, Wang M, Chen L, Xia H, Zhang T. Biofunctions of antimicrobial peptide-conjugated alginate/hyaluronic acid/collagen wound dressings promote wound healing of a mixed-bacteria-infected wound. Int J Biol Macromol. 2019; 140: 330–42. doi: https://doi.org/10.1016/j.ijbiomac.2019.08.087
Wang S, Ye Q, Wang K, Zeng X, Huang S, Yu H, Ge Q, Qi D, Qiao S. Enhancement of macrophage function by the antimicrobial peptide sublancin protects mice from methicillin-resistant Staphylococcus aureus. J Immunol Res. 2019; 2019: 3979352. doi: https://doi.org/10.1155/2019/3979352
Wan M, van der Does AM, Tang X, Lindbom L, Agerberth B, Haeggström JZ. Antimicrobial peptide LL-37 promotes bacterial phagocytosis by human macrophages. J Leukoc Biol. 2014; 95(6): 971–81. doi: https://doi.org/10.1189/jlb.0513304
Copyright (c) 2022 Dental Journal (Majalah Kedokteran Gigi)
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
- Every manuscript submitted to must observe the policy and terms set by the Dental Journal (Majalah Kedokteran Gigi).
- Publication rights to manuscript content published by the Dental Journal (Majalah Kedokteran Gigi) is owned by the journal with the consent and approval of the author(s) concerned.
- Full texts of electronically published manuscripts can be accessed free of charge and used according to the license shown below.
- The Dental Journal (Majalah Kedokteran Gigi) is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License