Chitosan's effects on the acidity, copper ion release, deflection, and surface roughness of copper-nickel-titanium archwire
Downloads
Background: Chitosan has an antimicrobial effect in oral hygiene control. Orthodontists sometimes prescribe mouthwash to adolescent patients. Copper-nickel-titanium (CuNiTi) orthodontic archwire is widely used in orthodontic treatment. Chitosan's effects on the CuNiTi properties of orthodontic archwire are not generally known. Purpose: This study aimed to measure the acidity, copper ion release, deflection, and surface roughness of CuNiTi orthodontic archwire immersed in artificial saliva and 2% chitosan. Methods: This study comprised experimental laboratory research. Forty-two CuNiTi orthodontic archwires were divided into three groups. Group A consisted of 18 archwires immersed in artificial saliva, Group B consisted of 18 archwires immersed in 2% chitosan, and Group C was six archwires for the baseline sample. The two intervention groups (A and B) were divided into three subgroups of six samples and were subjected to different immersion times”i.e., two, four, and six weeks. Acidity, copper ion release, deflection, and surface roughness were measured using pH meters, atomic absorption spectrophotometry (AAS), a universal testing machine (UTM), and a scanning electron microscope (SEM). Results: The results showed that Group A was more alkaline than Group B, and it was significantly different only in Week 2. Group B's copper ion release was significantly lower than Group A for all the time observations (p<0.05), and the deflection analysis showed no significant difference in any of the groups (p>0.05). Furthermore, the SEM images showed CuNiTi in Group A at Week-6 had the most porosities and defects. Conclusion: The chitosan produces buffer effects on the pH; it also exhibits lower copper ion release, no differences in unloading forces, and subjectively has better surface roughness.
Downloads
Dean JA. McDonald and Avery's dentistry for the child and adolescent. 10th ed. St. Louis: Elsevier; 2016. p. 700. web: https://evolve.elsevier.com/cs/product/9780323287494
Proffit W, Fields H, Larson B, Sarver D. Contemporary orthodontics. 6th ed. Philadelphia: Elsevier; 2019. p. 744. web: https://evolve.elsevier.com/cs/product/9780323543873
Uraz A, Boynueǧri D, Özcan G, Karaduman B, Uç D, Åženel S, Pehlivan S, Öǧüs E, Sultan N. Two percent chitosan mouthwash: A microbiological and clinical comparative study. J Dent Sci. 2012; 7(4): 342–9. doi: https://doi.org/10.1016/j.jds.2012.05.003
Razavi E-SE, Nik TH, Hooshmand T, Farazdaghi H, Arefi AH. Surface characterization and frictional force between stainless steel brackets and archwires in orthodontic patients using chlorhexidine- and Persica-containing mouthrinses: A randomized controlled trial. Dent Res J (Isfahan). 2021; 18: 21. pubmed: http://www.ncbi.nlm.nih.gov/pubmed/34249247
Atay HY. Antibacterial activity of chitosan-based systems. In: Functional chitosan. Singapore: Springer Singapore; 2020. p. 457–89. doi: https://doi.org/10.1007/978-981-15-0263-7_15
Thakur VK, Thakur MK, Kessler MR. Handbook of composites from renewable materials. Hoboken: Wiley; 2017. p. 116, 118. doi: https://doi.org/10.1002/9781119441632
Amini F, Rakhshan V, Pousti M, Rahimi H, Shariati M, Aghamohamadi B. Variations in surface roughness of seven orthodontic archwires: an SEM-profilometry study. Korean J Orthod. 2012; 42(3): 129–37. doi: https://doi.org/10.4041/kjod.2012.42.3.129
Sunny S, Reghunathan N, Dileep A, Alex A. Newer nickel titanium archwires in orthodontic treatment: an overview. IOSR J Dent Med Sci. 2020; 19(9): 40–3. doi: https://doi.org/10.9790/0853-1909054043
Furlan TPR, Barbosa JA, Basting RT. Nickel, copper, and chromium release by CuNi-titanium orthodontic archwires is dependent on the pH media. J Int Oral Heal. 2018; 10(5): 224–8. doi: https://doi.org/10.4103/jioh.jioh_186_18
Mahalaxmi S. Materials used in dentistry. 2nd ed. New Delhi: Wolters Kluwer; 2018. p. 79,143,633. web: https://books.google.co.id/books/about/Materials_Used_in_Dentistry.html?id=aPbsDwAAQBAJ&redir_esc=y
Lubis HF, Purba YA. Release of nickel ion and surface microstructure of NiTi archwire after immersion in tomato and orange juice. IOP Conf Ser Earth Environ Sci. 2021; 912(1): 012017. doi: https://doi.org/10.1088/1755-1315/912/1/012017
Pazzini CA, Marques LS, Pereira LJ, Corríªa-Faria P, Paiva SM. Allergic reactions and nickel-free braces: a systematic review. Braz Oral Res. 2011; 25(1): 85–90. doi: https://doi.org/10.1590/S1806-83242011000100015
Farrukh MA. Atomic absorption spectroscopy. Croatia: InTech; 2012. p. 145–6. doi: https://doi.org/10.5772/1090
World Health Organization. Guidelines for drinking-water quality; incorporating the 1st addendum. 4th ed. WHO; 2017. p. 224, 340. web: https://www.who.int/publications/i/item/9789241549950
Vincent M, Hartemann P, Engels-Deutsch M. Antimicrobial applications of copper. Int J Hyg Environ Health. 2016; 219(7): 585–91. doi: https://doi.org/10.1016/j.ijheh.2016.06.003
Gritsch L, Lovell C, Goldmann WH, Boccaccini AR. Fabrication and characterization of copper(II)-chitosan complexes as antibiotic-free antibacterial biomaterial. Carbohydr Polym. 2018; 179: 370–8. doi: https://doi.org/10.1016/j.carbpol.2017.09.095
Milheiro A, Nozaki K, Kleverlaan CJ, Muris J, Miura H, Feilzer AJ. In vitro cytotoxicity of metallic ions released from dental alloys. Odontology. 2016; 104(2): 136–42. doi: https://doi.org/10.1007/s10266-014-0192-z
Pratomo HG, Mardiati E, Soemantri ES, Evangelina IA. Deflection test on different orthodontic wire materials sized 0.016 x 0.022 inches. Maj Kedokt Gigi Indones. 2019; 4(3): 142–8. doi: https://doi.org/10.22146/majkedgiind.31236
Lombardo L, Marafioti M, Stefanoni F, Mollica F, Siciliani G. Load deflection characteristics and force level of nickel titanium initial archwires. Angle Orthod. 2012; 82(3): 507–21. doi: https://doi.org/10.2319/032511-213.1
Doshi UH, Mahindra RK. Comparison of the load deflection characteristics of esthetic and metal orthodontic wires on ceramic brackets using three point bending test. J Indian Orthod Soc. 2013; 47(4 suppl 3): 400–4. doi: https://doi.org/10.1177/0974909820130709S
Hasyim HS, Devi LS, Sumono A. Pengaruh perendaman kawat nikel-titanium termal ortodonti dalam minuman teh kemasan terhadap gaya defeksi kawat (The effect of Immersion thermal nickel-titanium achwire in the bottled te drinks to the achwireforce deflection). e-Jurnal Pustaka Kesehat. 2016; 4(2): 375–80. web: https://jurnal.unej.ac.id/index.php/JPK/article/view/3996
Ahrari F, Ramazanzadeh B-A, Sabzevari B, Ahrari A. The effect of fluoride exposure on the load-deflection properties of superelastic nickel-titanium-based orthodontic archwires. Aust Orthod J. 2012; 28(1): 72–9. pubmed: http://www.ncbi.nlm.nih.gov/pubmed/22866597
Hosseinzadeh Nik T, Ghadirian H, Ahmadabadi MN, Shahhoseini T, Haj-Fathalian M. Effect of saliva on load-deflection characteristics of superelastic nickel-titanium orthodontic wires. J Dent (Tehran). 2012; 9(4): 171–9. pubmed: http://www.ncbi.nlm.nih.gov/pubmed/23323178
Sreekanth C, Durga PG, Santhanakrishnan K, Vijaya Prasad KE. A comparative evaluation of effects of different kinds of sterilizations on modulus of elasticity and surface topography of Copper NiTi Wires-An invitro study. Ann Essences Dent. 2012; 4(3): 1–8. pdf: https://www.longdom.org/articles-pdfs/a-comparative-evaluation-of-effects-of-different-kinds-of-sterilizationson-modulus-of-elasticity-and-surface-topography-.pdf
Toloei A, Stoilov V, Northwood D. The relationship between surface roughness and corrosion. In: ASME International Mechanical Engineering Congress and Exposition Volume 2B: Advanced Manufacturing. California: American Society of Mechanical Engineers; 2013. p. 1–10. doi: https://doi.org/10.1115/IMECE2013-65498
Sastroasmoro S, Ismael S. Dasar-dasar metodologi penelitian klinis. 4th ed. Jakarta: Sagung Seto; 2011. p. 359. web: https://perpustakaan.fk.ui.ac.id/new-opac/index.php?p=show_detail&id=17079
Eliades T, Brantley WA. Orthodontic applications of biomaterials. Cambridge: Elsevier; 2017. p. 32, 110, 141. doi: https://doi.org/10.1016/C2014-0-04051-8
Lindawati Y, Sufarnap E, Munawarah W. The effect of fixed orthodontic treatment on salivary component. Dentika Dent J. 2019; 22(2): 30–3. doi: https://doi.org/10.32734/dentika.v22i2.1073
Nurunnabi M, Revuri V, Huh KM, Lee Y. Polysaccharide based nano/microformulation: an effective and versatile oral drug delivery system. In: Nanostructures for Oral Medicine. Elsevier; 2017. p. 409–33. doi: https://doi.org/10.1016/B978-0-323-47720-8.00015-8
Andreeva D V, Kollath A, Brezhneva N, Sviridov D V, Cafferty BJ, Möhwald H, Skorb E V. Using a chitosan nanolayer as an efficient pH buffer to protect pH-sensitive supramolecular assemblies. Phys Chem Chem Phys. 2017; 19(35): 23843–8. doi: https://doi.org/10.1039/C7CP02618H
Eliaz N. Corrosion of metallic biomaterials: a review. Mater. 2019; 12(3): 407. doi: https://doi.org/10.3390/ma12030407
Deriaty T, Nasution I, Yusuf M. Nickel ion release from stainless steel brackets in chlorhexidine and Piper betle Linn mouthwash. Dent J (Majalah Kedokt Gigi). 2018; 51(1): 5–9. doi: https://doi.org/10.20473/J.DJMKG.V51.I1.P5-9
Mikulewicz M, Chojnacka K, WoÅ‚owiec P. Release of metal ions from fixed orthodontic appliance: an in vitro study in continuous flow system. Angle Orthod. 2014; 84(1): 140–8. doi: https://doi.org/10.2319/113012-911.1
Fatene N, Mansouri S, Elkhalfi B, Berrada M, Mounaji K, Soukri A. Assessment of the electrochemical behaviour of Nickel-Titanium-based orthodontic wires: Effect of some natural corrosion inhibitors in comparison with fluoride. J Clin Exp Dent. 2019; 11(5): e414–20. doi: https://doi.org/10.4317/jced.55601
Brar AS, Singla A, Mahajan V, Jaj HS, Seth V, Negi P. Reliability of organic mouthwashes over inorganic mouthwashes in the assessment of corrosion resistance of NiTi arch wires. J Indian Orthod Soc. 2015; 49(3): 129–33. doi: https://doi.org/10.4103/0301-5742.165552
Rasyid NI, Pudyani PS, Heryumani JCP. Pelepasan ion nikel dan kromium kawat Australia dan stainless steel dalam saliva buatan. Dent J (Majalah Kedokt Gigi). 2014; 47(3): 168–72. doi: https://doi.org/10.20473/j.djmkg.v47.i3.p168-172
Palza H, Quijada R, Delgado K. Antimicrobial polymer composites with copper micro- and nanoparticles: Effect of particle size and polymer matrix. J Bioact Compat Polym. 2015; 30(4): 366–80. doi: https://doi.org/10.1177/0883911515578870
Anggani HS, Rusli V, Bachtiar EW. Chitosan gel prevents the growth of Porphyromonas gingivalis, Tannerella forsythia, and Treponema denticola in mini-implant during orthodontic treatment. Saudi Dent J. 2021; 33(8): 1024–8. doi: https://doi.org/10.1016/j.sdentj.2021.06.003
Sofar MK, Rafeeq RA. Evaluation of mechanical properties of Niti and CuNiti archwires in as received and after artificial aging. J Res Med Dent Sci. 2021; 9(2): 73–9. web: https://www.jrmds.in/articles/evaluation-of-mechanical-properties-of-niti-and-cuniti-archwires-in-as-received-and-after-artificial-aging-62482.html
Aghili H, Yasssaei S, Ahmadabadi MN, Joshan N. Load deflection characteristics of nickel titanium initial archwires. J Dent (Tehran). 2015; 12(9): 695–704. pubmed: http://www.ncbi.nlm.nih.gov/pubmed/27148381
Stoleru Paslaru E, Tsekov Y, Kotsilkova R, Ivanov E, Vasile C. Mechanical behavior at nanoscale of chitosan-coated PE surface. J Appl Polym Sci. 2015; 132: 42344. doi: https://doi.org/10.1002/app.42344
Murayama M, Namura Y, Tamura T, Iwai H, Shimizu N. Relationship between friction force and orthodontic force at the leveling stage using a coated wire. J Appl Oral Sci. 2013; 21(6): 554–9. doi: https://doi.org/10.1590/1679-775720130325
Elhelbawy N, Ellaithy M. Comparative evaluation of Stainless-steel wires and brackets coated with nanoparticles of chitosan or zinc oxide upon friction: An in vitro study. Int Orthod. 2021; 19(2): 274–80. doi: https://doi.org/10.1016/j.ortho.2021.01.009
Copyright (c) 2023 Dental Journal (Majalah Kedokteran Gigi)
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
- Every manuscript submitted to must observe the policy and terms set by the Dental Journal (Majalah Kedokteran Gigi).
- Publication rights to manuscript content published by the Dental Journal (Majalah Kedokteran Gigi) is owned by the journal with the consent and approval of the author(s) concerned.
- Full texts of electronically published manuscripts can be accessed free of charge and used according to the license shown below.
- The Dental Journal (Majalah Kedokteran Gigi) is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License