Properties of nanocellulose and zirconia alumina on polymethylmethacrylate dental composite
Downloads
Background: Polymethylmethacrylate (PMMA) is one of the synthetic polymers generally used for temporary jacket crown restorations because of its good translucency, making its aesthetic value higher, but its mechanical properties, such as hardness and flexural strength are lower than composite resins. Hence, adding zirconia and cellulose filler is necessary to enhance its mechanical properties. Purpose: This is an experimental laboratory study to make nanocomposites with PMMA as a matrix with crystalline nanocellulose, zirconia, and alumina added as fillers. Methods: The crystalline nanocellulose filler was synthesized by acid hydrolysis. Zirconia and alumina were synthesized using the sol-gel technique and then characterized by transmission electron microscope and X-ray diffraction. The Micro Vickers hardness test and three-point bending tested mechanical properties. The analysis was carried out with a one-way analysis of variance, followed by a post hoc Tuckey's test with a P < 0.05 taken as statistically significant. Results: The Micro Vickers hardness test showed the highest hardness in the group with a ratio of PMMA and zirconia-alumina filler of 50%: 2%: 48% (12.73 VHN). The results of the three-point bending test showed that the highest flexural strength was found in the control group (19.4 MPa). Conclusion: The addition of crystalline nanocellulose, zirconia, and alumina increase the hardness of the nanocomposite, while the flexural strength was lower than PMMA without filler addition.
Downloads
Anusavice K, Shen C, Rawls HR. Phillips' science of dental materials. 12th ed. Philadelphia: Saunders; 2013. p. 592. web: https://evolve.elsevier.com/cs/product/9781455748136
Powers J, Wataha J. Dental materials: foundations and applications. 11th ed. St. Louis: Mosby; 2016. p. 272. web: https://www.elsevier.com/books/dental-materials/978-0-323-31637-8
McCabe JF, Walls AWG. Applied dental materials. 9th ed. Oxford: Wiley-Blackwell; 2013. p. 320. web: https://www.wiley.com/en-sg/Applied+Dental+Materials%2C+9th+Edition-p-9781118697122
Jacobsen P. Restorative dentistry: An integrated approach. 2nd ed. Oxford: Wiley-Blackwell; 2008. p. 352. web: https://www.wiley.com/en-us/Restorative+Dentistry:+An+Integrated+Approach,+2nd+Edition-p-9781405167994
Galví£o MR, Caldas SGFR, Bagnato VS, de Souza Rastelli AN, de Andrade MF. Evaluation of degree of conversion and hardness of dental composites photo-activated with different light guide tips. Eur J Dent. 2013; 7(1): 86–93. pubmed: http://www.ncbi.nlm.nih.gov/pubmed/23407620
Scribante A, Bollardi M, Chiesa M, Poggio C, Colombo M. Flexural properties and elastic modulus of different esthetic restorative materials: evaluation after exposure to acidic drink. Biomed Res Int. 2019; 2019: 5109481. doi: https://doi.org/10.1155/2019/5109481
Gundogdu M, Kurklu D, Yanikoglu N, Kul E. The evaluation of flexural strength of composite resin materials with and without fiber. Dentistry. 2014; 4(9): 259. doi: https://doi.org/10.4172/2157-7633.1000259
Erdemir U, Yildiz E, Eren MM, Ozel S. Surface hardness evaluation of different composite resin materials: influence of sports and energy drinks immersion after a short-term period. J Appl Oral Sci. 2013; 21(2): 124–31. doi: https://doi.org/10.1590/1678-7757201302185
Özyürek T, Topkara C, Koçak Ä°, Yılmaz K, Gündoğar M, Uslu G. Fracture strength of endodontically treated teeth restored with different fiber post and core systems. Odontology. 2020; 108(4): 588–95. doi: https://doi.org/10.1007/s10266-020-00481-4
Ravikumar, Prasad MSS. Fracture toughness and mechanical properties of aluminum oxide filled chopped strand mat e-glass fiber reinforced – epoxy composites. Int J Sci Res Publ. 2014; 4(7): 1–7. pdf: https://www.ijsrp.org/research-paper-0714/ijsrp-p3176.pdf
Sunendar B, Fathina A, Harmaji A, Mardhian DF, Asri L, Widodo HB. The effect of CHA-doped Sr addition to the mechanical strength of metakaolin dental implant geopolymer composite. In: AIP Conference Proceedings 1887. AIP Publishing; 2017. p. 020020. doi: https://doi.org/10.1063/1.5003503
Manappallil J. Basic dental materials. 4th ed. New Delhi: Jaypee Brothers Medical Publishers (P) Ltd.; 2016. p. 630. doi: https://doi.org/10.5005/jp/books/12669
Sawalha S, Ma'ali R, Surkhi O, Sawalha M, Dardouk B, Walwel H, Haj Ahmad D. Reinforcing of low-density polyethylene by cellulose extracted from agricultural wastes. J Compos Mater. 2019; 53(2): 219–25. doi: https://doi.org/10.1177/0021998318781702
Roszowska-Jarosz M, Masiewicz J, Kostrzewa M, Kucharczyk W, Żurowski W, Kucińska-Lipka J, Przybyłek P. Mechanical properties of bio-composites based on epoxy resin and nanocellulose fibres. Mater (Basel, Switzerland). 2021; 14(13): 3576. doi: https://doi.org/10.3390/ma14133576
Khalil HPSA, Davoudpour Y, Aprilia NAS, Mustapha A, Hossain S, Islam N, Dungani R. Nanocellulose-based polymer nanocomposite: isolation, characterization and applications. In: Nanocellulose polymer nanocomposites. Hoboken, NJ, USA: John Wiley & Sons, Inc.; 2014. p. 273–309. doi: https://doi.org/10.1002/9781118872246.ch11
Septevani AA, Annamalai PK, Martin DJ. Synthesis and characterization of cellulose nanocrystals as reinforcing agent in solely palm based polyurethane foam. In: AIP Conference Proceedings 1904. AIP Publishing; 2017. p. 020042. doi: https://doi.org/10.1063/1.5011899
Sasaki K, Hayashi T, Asakura M, Ando M, Kawai T, Ban S. Improving biocompatibility of zirconia surface by incorporating Ca ions. Dent Mater J. 2015; 34(3): 336–44. doi: https://doi.org/10.4012/dmj.2014-199
Kang MS, Jang HJ, Lee SH, Lee JE, Jo HJ, Jeong SJ, Kim B, Han D-W. Potential of carbon-based nanocomposites for dental tissue engineering and regeneration. Mater (Basel, Switzerland). 2021; 14(17): 5104. doi: https://doi.org/10.3390/ma14175104
Asri L, Septawendar R, Sunendar B. Zirkonia untuk aplikasi material restorasi gigi. J Keramik dan Gelas Indones. 2016; 25(2): 79–88. doi: https://doi.org/10.32537/jkgi.v25i2.2667
Gafur MA, Al-Amin M, Sarker MSR, Alam MZ. Structural and mechanical properties of alumina-zirconia (ZTA) composites with unstabilized zirconia modulation. Mater Sci Appl. 2021; 12(11): 542–60. doi: https://doi.org/10.4236/msa.2021.1211036
Faza Y, Hasratiningsih Z, Harmaji A, Joni IM. Preparation and characterization of zirconia-alumina system via solution and solid phase mixing method. In: AIP Conference Proceedings 1927. AIP Publishing; 2018. p. 030030. doi: https://doi.org/10.1063/1.5021223
Trache D, Tarchoun AF, Derradji M, Hamidon TS, Masruchin N, Brosse N, Hussin MH. Nanocellulose: From fundamentals to advanced applications. Front Chem. 2020; 8: 392. doi: https://doi.org/10.3389/fchem.2020.00392
Lin N, Dufresne A. Nanocellulose in biomedicine: Current status and future prospect. Eur Polym J. 2014; 59: 302–25. doi: https://doi.org/10.1016/j.eurpolymj.2014.07.025
George J, Sabapathi SN. Cellulose nanocrystals: synthesis, functional properties, and applications. Nanotechnol Sci Appl. 2015; 8: 45–54. doi: https://doi.org/10.2147/NSA.S64386
Hasratiningsih Z, Takarini V, Cahyanto A, Faza Y, Asri LATW, Purwasasmita BS. Hardness evaluation of PMMA reinforced with two different calcinations temperatures of ZrO 2 -Al 2 O 3 -SiO 2 filler system. IOP Conf Ser Mater Sci Eng. 2017; 172: 012067. doi: https://doi.org/10.1088/1757-899X/172/1/012067
Copyright (c) 2023 Dental Journal
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
- Every manuscript submitted to must observe the policy and terms set by the Dental Journal (Majalah Kedokteran Gigi).
- Publication rights to manuscript content published by the Dental Journal (Majalah Kedokteran Gigi) is owned by the journal with the consent and approval of the author(s) concerned.
- Full texts of electronically published manuscripts can be accessed free of charge and used according to the license shown below.
- The Dental Journal (Majalah Kedokteran Gigi) is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License