Degradation of Fusobacterium nucleatum biofilm and quantity of reactive oxygen species due to a combination of photodynamic therapy and 2.5% sodium hypochlorite
Downloads
Background: The persistence of microorganisms in the root canal system is one of the leading causes of root canal treatment failure. Biofilms of putative pathogens hidden inside dentin tubules and other root canal ramifications may limit current disinfection protocols. Photodynamic therapy (PDT) with a wavelength of 628 nm can be used as an antimicrobial strategy that uses low-power laser energy to activate a non-toxic photosensitizer to produce singlet oxygen with the ability to kill microorganisms in root canals. Fusobacterium nucleatum was used because this bacterium is one of the bacteria involved in root canal infection. Purpose: The aim of this study was to compare the bactericidal efficacy of sodium hypochlorite (NaOCl) 2.5%, PDT, and a combination of PDT and NaOCl 2.5% against Fusobacterium nucleatum. Methods: Mature biofilm Fusobacterium nucleatum was divided into four groups according to the protocol of decontamination: K1 (negative control – biofilm), K2 (NaOCl 2.5%), K3 (PDT), and K4 (NaOCl 2.5% + PDT). Biofilm degradation was observed using optical density (OD) at 570 nm using a microplate reader. A reactive oxygen species quantity check was carried out using a nitroblue tetrazolium test, and OD observation was done with a microplate reader at 540 nm. Results: Group 4 (NaOCl 2.5% + PDT) showed more biofilm bacteria elimination than the other groups. Conclusion: A combination of PDT and NaOCl 2.5% can be considered an effective protocol for the elimination of Fusobacterium nucleatum. There is a potentiation relationship between NaOCl 2.5% and PDT FotoSan. Biofilm degradation occurs because of the effect of antibacterial NaOCl 2.5% and the irradiation effect of the Toluidine blue O photosensitizer.
Downloads
Homenta H. Infeksi biofilm bakterial. J e-Biomedik. 2016; 4(1): 1–11. web: https://ejournal.unsrat.ac.id/index.php/ebiomedik/article/view/11736/0
Solano C, Echeverz M, Lasa I. Biofilm dispersion and quorum sensing. Curr Opin Microbiol. 2014; 18: 96–104. doi: https://doi.org/10.1016/j.mib.2014.02.008
Wang Y, Bian Z, Wang Y. Biofilm formation and inhibition mediated by bacterial quorum sensing. Appl Microbiol Biotechnol. 2022; 106(19–20): 6365–81. doi: https://doi.org/10.1007/s00253-022-12150-3
Tambayong AJ, Widjiastuti I, Lunardhi CGJ. Differences in photodynamic therapy exposure time and Staphylococcus aureus counts. Dent J. 2018; 51(2): 95–8. doi: https://doi.org/10.20473/j.djmkg.v51.i2.p95-98
Balakrishna N, Moogi P, Kumar Gv, Prashanth B, Shetty N, Rao K. Effect of conventional irrigation and photoactivated disinfection on Enterococcus faecalis in root canals: An in vitro study. J Conserv Dent. 2017; 20(2): 125–8. doi: https://doi.org/10.4103/0972-0707.212244
Garg N, Garg A. Textbook of operative dentistry. 3rd ed. New Delhi: Jaypee Brother Medical Publishers; 2015. p. 241, 502. web: https://books.google.co.id/books/about/Textbook_of_Operative_Dentistry.html?id=JdNgAQAACAAJ&redir_esc=y
Martinho FC, Leite FRM, Nóbrega LMM, Endo MS, Nascimento GG, Darveau RP, Gomes BPFA. Comparison of Fusobacterium nucleatum and Porphyromonas gingivalis Lipopolysaccharides clinically isolated from root canal infection in the induction of pro-inflammatory cytokines secretion. Braz Dent J. 2016; 27(2): 202–7. doi: https://doi.org/10.1590/0103-6440201600572
Lee L-W, Lee Y-L, Hsiao S-H, Lin H-P. Bacteria in the apical root canals of teeth with apical periodontitis. J Formos Med Assoc. 2017; 116(6): 448–56. doi: https://doi.org/10.1016/j.jfma.2016.08.010
Gomes BPFA, Bronzato JD, Almeida-Gomes RF, Pinheiro ET, Sousa ELR, Jacinto RC. Identification of Fusobacterium nucleatum in primary and secondary endodontic infections and its association with clinical features by using two different methods. Clin Oral Investig. 2021; 25(11): 6249–58. doi: https://doi.org/10.1007/s00784-021-03923-7
Hsieh S-C, Teng N-C, Chu CC, Chu Y-T, Chen C-H, Chang L-Y, Hsu C-Y, Huang C-S, Hsiao GY-W, Yang J-C. The antibacterial efficacy and in vivo toxicity of sodium hypochlorite and electrolyzed oxidizing (EO) water-based endodontic irrigating solutions. Materials (Basel). 2020; 13(2): 260. doi: https://doi.org/10.3390/ma13020260
Kandaswamy D, Venkateshbabu N. Root canal irrigants. J Conserv Dent. 2010; 13(4): 256–64. doi: https://doi.org/10.4103/0972-0707.73378
Jaju S, Jaju PP. Newer root canal irrigants in horizon: a review. Int J Dent. 2011; 2011: 851359. doi: https://doi.org/10.1155/2011/851359
Shrestha A, Cordova M, Kishen A. Photoactivated polycationic bioactive chitosan nanoparticles inactivate bacterial endotoxins. J Endod. 2015; 41(5): 686–91. doi: https://doi.org/10.1016/j.joen.2014.12.007
Diogo P, Fernandes C, Caramelo F, Mota M, Miranda IM, Faustino MAF, Neves MGPMS, Uliana MP, de Oliveira KT, Santos JM, Gonçalves T. Antimicrobial photodynamic therapy against endodontic Enterococcus faecalis and Candida albicans mono and mixed biofilms in the presence of photosensitizers: a comparative study with classical endodontic irrigants. Front Microbiol. 2017; 8: 498. doi: https://doi.org/10.3389/fmicb.2017.00498
Jiménez A, Palmero-Cámara C, González-Santos MJ, González-Bernal J, Jiménez-Eguizábal JA. The impact of educational levels on formal and informal entrepreneurship. BRQ Bus Res Q. 2015; 18(3): 204–12. doi: https://doi.org/10.1016/j.brq.2015.02.002
Bago JuriÄ I, PleÄko V, Anić I, PleÅ¡ko S, Jakovljević S, Rocca JP, Medioni E. Antimicrobial efficacy of photodynamic therapy, Nd:YAG laser and QMiX solution against Enterococcus faecalis biofilm. Photodiagnosis Photodyn Ther. 2016; 13: 238–43. doi: https://doi.org/10.1016/j.pdpdt.2015.07.176
Keshari AK, Verma AK, Kumar T, Srivastava R. Oxidative stress: a review. Int J Sci Technoledge. 2015; 3(7): 155–62. web: https://internationaljournalcorner.com/index.php/theijst/article/view/124523/0
Correia JH, Rodrigues JA, Pimenta S, Dong T, Yang Z. Photodynamic therapy review: principles, photosensitizers, applications, and future directions. Pharmaceutics. 2021; 13(9): 1332. doi: https://doi.org/10.3390/pharmaceutics13091332
Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O. Oxidative stress and antioxidant defense. World Allergy Organ J. 2012; 5(1): 9–19. doi: https://doi.org/10.1097/WOX.0b013e3182439613
Astuti SD, Mawaddah A, Nasution AM, Mahmud AF, Fitriyah N, Kusumawati I, Abdurachman, Puspita PS, Suhariningsih. Effectiveness of photodynamic inactivation with exogenous photosensitizer Curcuma longa extract activated by laser diode 403 nm on Staphylococcus aureus. J Int Dent Med Res. 2020; 13(1): 155–61. web: http://www.jidmr.com/journal/wp-content/uploads/2020/04/28.D19_918_Suryani_Dyah_Astuti_Indonesia-28.pdf
Paqué F, Boessler C, Zehnder M. Accumulated hard tissue debris levels in mesial roots of mandibular molars after sequential irrigation steps. Int Endod J. 2011; 44(2): 148–53. doi: https://doi.org/10.1111/j.1365-2591.2010.01823.x
Neves G de V, dos Santos KSA, Rocha EAL de SS, de Moura RQ, Barros DGM, Gominho LF, Gomes DQ de C. Antibacterial effect of photodynamic therapy on root canal disinfection combined with different irrigation protocols. Iran Endod J. 2020; 15(2): 90–5. doi: https://doi.org/10.22037/iej.v15i2.27801
Plotino G, Grande NM, Mercade M. Photodynamic therapy in endodontics. Int Endod J. 2019; 52(6): 760–74. doi: https://doi.org/10.1111/iej.13057
Astuti SD, Hafidiana, Rulaningtyas R, Abdurachman, Putra AP, Samian, Arifianto D. The efficacy of photodynamic inactivation with laser diode on Staphylococcus aureus biofilm with various ages of biofilm. Infect Dis Rep. 2020; 12(11): 8736. doi: https://doi.org/10.4081/idr.2020.8736
TiÈ™ler C-E, Badea M-E, Buduru S, Kui A, Floria M, POPESCU Ștefan, Mitaru M, Negucioiu M. Biofilm inactivation using photodynamic therapy in dentistry: a review of literature. DOGARU G, editor. Balneo Res J. 2020; 11(3): 279–87. doi: https://doi.org/10.12680/balneo.2020.353
Lindawati Y, Primasari A, Suryanto D. Fusobacterium nucleatum : bakteri anaerob pada lingkungan kaya oksigen (dihubungkan dengan staterin Saliva). Talent Conf Ser Trop Med. 2018; 1(1): 181–8. doi: https://doi.org/10.32734/tm.v1i1.58
Xhevdet A, Stubljar D, Kriznar I, Jukic T, Skvarc M, Veranic P, Ihan A. The disinfecting efficacy of root canals with laser photodynamic therapy. J Lasers Med Sci. 2014; 5(1): 19–26. doi: https://doi.org/10.22037/2010.v5i1.4811
Lins CCSA, Melo ARS, Silva CC, Oliveira JB, Lima GA, Castro CMMB, Diniz FA. Photodynamic therapy application in endodontic aerobic microorganisms and facultative anaerobic. Formatex. 2015; : 559–63. web: https://www.researchgate.net/publication/285598622
Arneiro RAS, Nakano RD, Antunes LAA, Ferreira GB, Fontes KBFC, Antunes LS. Efficacy of antimicrobial photodynamic therapy for root canals infected with Enterococcus faecalis. J Oral Sci. 2014; 56(4): 277–85. doi: https://doi.org/10.2334/josnusd.56.277
Canga M, Subashi B. Antibacterial effectiveness of NaOCL and chlorexidine in infected root canal. Int J Sci Res. 2015; 4(3): 678–80. web: https://www.ijsr.net/get_abstract.php?paper_id=SUB151930
Sahebi S, Khosravifar N, Sedighshamsi M, Motamedifar M. Comparison of the antibacterial effect of sodium hypochlorite and aloe vera solutions as root canal irrigants in human extracted teeth contaminated with enterococcus faecalis. J Dent (Shiraz, Iran). 2014; 15(1): 39–43. pubmed: http://www.ncbi.nlm.nih.gov/pubmed/24738089
Janani M, Jafari F, Samiei M, Lotfipour F, Nakhlband A, Ghasemi N, Salari T. Evaluation of antibacterial efficacy of photodynamic therapy vs. 2.5% NaOCl against E. faecalis-infected root canals using real-time PCR technique. J Clin Exp Dent. 2017; 9(4): e539–44. doi: https://doi.org/10.4317/jced.53526
Zhang S, Wang Y, Lu J, Yu Z, Song H, Bond PL, Guo J. Chlorine disinfection facilitates natural transformation through ROS-mediated oxidative stress. ISME J. 2021; 15(10): 2969–85. doi: https://doi.org/10.1038/s41396-021-00980-4
Harris J. Comparison of STERIPLEX TM HC and sodium hypochlorite cytotoxicity on primary human gingival fibroblasts. Virginia Commonwealth University, School of Dentistry; 2012. p. 1–25. doi: https://doi.org/10.25772/XNAH-JZ30
Mohmmed SA, Vianna ME, Penny MR, Hilton ST, Knowles JC. The effect of sodium hypochlorite concentration and irrigation needle extension on biofilm removal from a simulated root canal model. Aust Endod J. 2017; 43(3): 102–9. doi: https://doi.org/10.1111/aej.12203
Uğur Aydin Z, Akpinar KE, Hepokur C, Erdönmez D. Assessment of toxicity and oxidative DNA damage of sodium hypochlorite, chitosan and propolis on fibroblast cells. Braz Oral Res. 2018; 32: e119. doi: https://doi.org/10.1590/1807-3107bor-2018.vol32.0119
Chandra BS, Gopikrishna V. Grossman's endodontic practice. 13th ed. New Delhi: Wolters Kluwer; 2014. p. 55–7. web: https://books.google.co.id/books/about/Grossman_s_Endodontic_Practice.html?id=tC3vDwAAQBAJ&source=kp_book_description&redir_esc=y
Ok E, Adanir N, Hakki S. Comparison of cytotoxicity of various concentrations origanum extract solution with 2% chlorhexidine gluconate and 5.25% sodium hypochlorite. Eur J Dent. 2015; 9(1): 6–10. doi: https://doi.org/10.4103/1305-7456.149630
Rosen E, Elbahary S, Haj-Yahya S, Jammal L, Shemesh H, Tsesis I. The invasion of bacterial biofilms into the dentinal tubules of extracted teeth retrofilled with fluorescently labeled retrograde filling materials. Appl Sci. 2020; 10(19): 6996. doi: https://doi.org/10.3390/app10196996
Vaziri S, Kangarlou A, Shahbazi R, Nazari Nasab A, Naseri M. Comparison of the bactericidal efficacy of photodynamic therapy, 2.5% sodium hypochlorite, and 2% chlorhexidine against Enterococcous faecalis in root canals; an in vitro study. Dent Res J (Isfahan). 2012; 9(5): 613–8. doi: https://doi.org/10.4103/1735-3327.104882
Bibova N, Simeonova E, Dimitrova S, Dakov K, Denkova Z, Yanakieva V. Photoactivated disinfection of root canal system with FotoSan. IOSR J Dent Med Sci. 2019; 18(9): 81–4. doi: https://doi.org/10.9790/0853-1809018184
Abrahamse H, Hamblin MR. New photosensitizers for photodynamic therapy. Biochem J. 2016; 473(4): 347–64. doi: https://doi.org/10.1042/BJ20150942
Astuti SD, Wibowo RA, Abdurachman, Triyana K. Antimicrobial photodynamic effects of polychromatic light activated by magnetic fields to bacterial viability. J Int Dent Med Res. 2017; 10(1): 111–7. pdf: http://www.jidmr.com/journal/wp-content/uploads/2017/02/20D16_330_Suryani_Dyah_Astuti.pdf
Dai T, Fuchs BB, Coleman JJ, Prates RA, Astrakas C, St. Denis TG, Ribeiro MS, Mylonakis E, Hamblin MR, Tegos GP. Concepts and principles of photodynamic therapy as an alternative antifungal discovery platform. Front Microbiol. 2012; 3: 120. doi: https://doi.org/10.3389/fmicb.2012.00120
Pourhajibagher M, Bahador A. Adjunctive antimicrobial photodynamic therapy to conventional chemo-mechanical debridement of infected root canal systems: A systematic review and meta-analysis. Photodiagnosis Photodyn Ther. 2019; 26: 19–26. doi: https://doi.org/10.1016/j.pdpdt.2019.02.009
Damasceno MCF, Araújo MM do C. Photodynamic therapy in endodontics: literature review. Brazilian J Implantol Heal Sci. 2021; 3(3): 27–40. web: https://bjihs.emnuvens.com.br/bjihs/article/view/156/214
Souza MA, Steier L, Rossi-Fedele G, Barth Júnior V, De Oliveira SD, De Figueiredo JAP. Effectiveness of photodynamic therapy and sodium hypochlorite on root canal system infected with Enterococcus faecalis – An in vitro study. Rev Odonto Ciíªncia. 2016; 31(3): 114. doi: https://doi.org/10.15448/1980-6523.2016.3.21746
Ng R, Singh F, Papamanou DA, Song X, Patel C, Holewa C, Patel N, Klepac-Ceraj V, Fontana CR, Kent R, Pagonis TC, Stashenko PP, Soukos NS. Endodontic photodynamic therapy ex vivo. J Endod. 2011; 37(2): 217–22. doi: https://doi.org/10.1016/j.joen.2010.10.008
Bumb SS, Bhaskar DJ, Agali CR, Punia H, Gupta V, Singh V, Kadtane S, Chandra S. Assessment of photodynamic therapy (PDT) in disinfection of deeper dentinal tubules in a root canal system: an in vitro study. J Clin Diagnostic Res. 2014; 8(11): ZC67–71. doi: https://doi.org/10.7860/JCDR/2014/11047.5155
Hopp M, Biffar R. Photodynamic therapies – blue versus green. Laser. 2013; 1: 10–25. web: https://epaper.zwp-online.info/epaper/2442/export-article/10
Olivi G, Olivi M. Lasers in restorative dentistry. Berlin, Heidelberg: Springer Berlin Heidelberg; 2015. p. 274. doi: https://doi.org/10.1007/978-3-662-47317-7
DÄ…browski JM. Reactive oxygen species in photodynamic therapy: Mechanisms of their generation and potentiation. In: van Eldik R, Hubbard CD, editors. Advances in Inorganic Chemistry: Inorganic Reaction Mechanisms. Elsevier - Academic Press; 2017. p. 343–94. doi: https://doi.org/10.1016/bs.adioch.2017.03.002
Copyright (c) 2023 Dental Journal
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
- Every manuscript submitted to must observe the policy and terms set by the Dental Journal (Majalah Kedokteran Gigi).
- Publication rights to manuscript content published by the Dental Journal (Majalah Kedokteran Gigi) is owned by the journal with the consent and approval of the author(s) concerned.
- Full texts of electronically published manuscripts can be accessed free of charge and used according to the license shown below.
- The Dental Journal (Majalah Kedokteran Gigi) is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License