Induced pluripotent stem cells in periodontal reconstructive therapy: A narrative review of pre-clinical studies
Downloads
Background: Regenerative periodontal surgical therapy faces significant challenges due to the limited ability of the body to regenerate damaged periodontal tissue. One of the primary goals in regenerative periodontal therapy is regaining periodontal tissue attachment after destruction by periodontal disease. Currently, stem cells, harnessing three pivotal components”cells, biomaterials, and growth factors”are widely used in periodontal regeneration. Stem cells can be obtained from various sources, either by isolating cells from bone marrow, teeth, and muscles or through the somatic cell programming method (reprogramming) known as induced pluripotent stem cells (iPSCs). Purpose: This review aims to describe the potential use of iPSCs in the treatment of periodontal defects. Review: Search strategies were developed using the PubMed, LILACS, Scielo, and Wiley online databases during the period of 2012–2022. Ten articles met the inclusion criteria. iPSCs were obtained by inducing somatic cells from both dental and non-dental sources with factors Oct3/4, Sox2, Klf4, and c-Myc. Periodontal tissue regeneration procedures can be augmented with iPSCs. Unlike tooth-based stem cells, iPSCs offer several advantages, such as unlimited cell sources and the capability to differentiate into any cell type, including periodontal tissue. The potential of iPSCs extends to correcting periodontal bone defects and forming new periodontal tissues, such as alveolar bone, cementum, and periodontal ligament. However, iPSCs do have limitations, including the need for clinical trials, cell programming production facilities, and optimization of differentiated-cell functionality. Conclusion: The combined use of iPSCs in cell-based tissue engineering holds vast potential for future periodontal treatment strategies.
Downloads
Xu X-Y, Li X, Wang J, He X-T, Sun H-H, Chen F-M. Concise review: periodontal tissue regeneration using stem cells: strategies and translational considerations. Stem Cells Transl Med. 2019; 8(4): 392–403. doi: https://doi.org/10.1002/sctm.18-0181
Iwata T, Yamato M, Ishikawa I, Ando T, Okano T. Tissue engineering in periodontal tissue. Anat Rec. 2014; 297(1): 16–25. doi: https://doi.org/10.1002/ar.22812
Siaili M, Chatzopoulou D, Gillam DG. An introduction to periodontal regeneration. Dent Nurs. 2013; 9(12): 686–91. doi: https://doi.org/10.12968/denn.2013.9.12.686
Sheikh Z, Hamdan N, Ikeda Y, Grynpas M, Ganss B, Glogauer M. Natural graft tissues and synthetic biomaterials for periodontal and alveolar bone reconstructive applications: a review. Biomater Res. 2017; 21: 9. doi: https://doi.org/10.1186/s40824-017-0095-5
Sasaki J-I, Abe GL, Li A, Thongthai P, Tsuboi R, Kohno T, Imazato S. Barrier membranes for tissue regeneration in dentistry. Biomater Investig Dent. 2021; 8(1): 54–63. doi: https://doi.org/10.1080/26415275.2021.1925556
Sculean A, Windisch P, Szendröi-Kiss D, Horváth A, Rosta P, Becker J, Gera I, Schwarz F. Clinical and histologic evaluation of an enamel matrix derivative combined with a biphasic calcium phosphate for the treatment of human intrabony periodontal defects. J Periodontol. 2008; 79(10): 1991–9. doi: https://doi.org/10.1902/jop.2008.080009
Hu L, Liu Y, Wang S. Stem cell-based tooth and periodontal regeneration. Oral Dis. 2018; 24(5): 696–705. doi: https://doi.org/10.1111/odi.12703
Duan X, Tu Q, Zhang J, Ye J, Sommer C, Mostoslavsky G, Kaplan D, Yang P, Chen J. Application of induced pluripotent stem (iPS) cells in periodontal tissue regeneration. J Cell Physiol. 2011; 226(1): 150–7. doi: https://doi.org/10.1002/jcp.22316
Zakrzewski W, Dobrzyński M, Szymonowicz M, Rybak Z. Stem cells: past, present, and future. Stem Cell Res Ther. 2019; 10(1): 68. doi: https://doi.org/10.1186/s13287-019-1165-5
Ying Q-L, Wray J, Nichols J, Batlle-Morera L, Doble B, Woodgett J, Cohen P, Smith A. The ground state of embryonic stem cell self-renewal. Nature. 2008; 453(7194): 519–23. doi: https://doi.org/10.1038/nature06968
Kusumawardani B, Robin DMC, Puspitasari E, Savitri IJ, Suendi DAP. Cultivation and expansion of mesenchymal stem cells from human gingival tissue and periodontal ligament in different culture media. Dent J. 2021; 54(1): 39–45. doi: https://doi.org/10.20473/j.djmkg.v54.i1.p39-45
Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007; 131(5): 861–72. doi: https://doi.org/10.1016/j.cell.2007.11.019
Lo B, Parham L. Ethical issues in stem cell research. Endocr Rev. 2009; 30(3): 204–13. doi: https://doi.org/10.1210/er.2008-0031
Yan X, Qin H, Qu C, Tuan RS, Shi S, Huang GT-J. iPS cells reprogrammed from human mesenchymal-like stem/progenitor cells of dental tissue origin. Stem Cells Dev. 2010; 19(4): 469–80. doi: https://doi.org/10.1089/scd.2009.0314
Bongso A, Fong C-Y, Gauthaman K. Taking stem cells to the clinic: Major challenges. J Cell Biochem. 2008; 105(6): 1352–60. doi: https://doi.org/10.1002/jcb.21957
Lee H, Park J, Forget BG, Gaines P. Induced pluripotent stem cells in regenerative medicine: an argument for continued research on human embryonic stem cells. Regen Med. 2009; 4(5): 759–69. doi: https://doi.org/10.2217/rme.09.46
Yin X, Li P, Li Y, Cai Y, Wen J, Luan Q. Growth/differentiation factor-5 promotes in vitro/vivo periodontal specific differentiation of induced pluripotent stem cell-derived mesenchymal stem cells. Exp Ther Med. 2017; 14(5): 4111–7. doi: https://doi.org/10.3892/etm.2017.5030
Chien K-H, Chang Y-L, Wang M-L, Chuang J-H, Yang Y-C, Tai M-C, Wang C-Y, Liu Y-Y, Li H-Y, Chen J-T, Kao S-Y, Chen H-L, Lo W-L. Promoting induced pluripotent stem cell-driven biomineralization and periodontal regeneration in rats with maxillary-molar defects using injectable BMP-6 hydrogel. Sci Rep. 2018; 8(1): 114. doi: https://doi.org/10.1038/s41598-017-18415-6
Hamano S, Tomokiyo A, Hasegawa D, Yoshida S, Sugii H, Mitarai H, Fujino S, Wada N, Maeda H. Extracellular matrix from periodontal ligament cells could induce the differentiation of induced pluripotent stem cells to periodontal ligament stem cell-like cells. Stem Cells Dev. 2018; 27(2): 100–11. doi: https://doi.org/10.1089/scd.2017.0077
Zhou L-N, Bi C-S, Gao L-N, An Y, Chen F, Chen F-M. Macrophage polarization in human gingival tissue in response to periodontal disease. Oral Dis. 2019; 25(1): 265–73. doi: https://doi.org/10.1111/odi.12983
Cai J, Zhang Y, Liu P, Chen S, Wu X, Sun Y, Li A, Huang K, Luo R, Wang L, Liu Y, Zhou T, Wei S, Pan G, Pei D. Generation of tooth-like structures from integration-free human urine induced pluripotent stem cells. Cell Regen (London, England). 2013; 2(1): 6. doi: https://doi.org/10.1186/2045-9769-2-6
Wen Y, Wang F, Zhang W, Li Y, Yu M, Nan X, Chen L, Yue W, Xu X, Pei X. Application of induced pluripotent stem cells in generation of a tissue-engineered tooth-like structure. Tissue Eng Part A. 2012; 18(15–16): 1677–85. doi: https://doi.org/10.1089/ten.TEA.2011.0220
Otsu K, Kishigami R, Oikawa-Sasaki A, Fukumoto S, Yamada A, Fujiwara N, Ishizeki K, Harada H. Differentiation of induced pluripotent stem cells into dental mesenchymal cells. Stem Cells Dev. 2012; 21(7): 1156–64. doi: https://doi.org/10.1089/scd.2011.0210
Halevy T, Urbach A. Comparing ESC and iPSC”based models for human genetic disorders. J Clin Med. 2014; 3(4): 1146–62. doi: https://doi.org/10.3390/jcm3041146
Choi H, Park K-H, Lee A-R, Mun CH, Shin YD, Park Y-B, Park Y-B. Control of dental-derived induced pluripotent stem cells through modified surfaces for dental application. Acta Odontol Scand. 2017; 75(5): 309–18. doi: https://doi.org/10.1080/00016357.2017.1303847
Okawa H, Kayashima H, Sasaki J-I, Miura J, Kamano Y, Kosaka Y, Imazato S, Yatani H, Matsumoto T, Egusa H. Scaffold-free fabrication of osteoinductive cellular constructs using mouse gingiva-derived induced pluripotent stem cells. Stem Cells Int. 2016; 2016: 1–11. doi: https://doi.org/10.1155/2016/6240794
Egusa H, Okita K, Kayashima H, Yu G, Fukuyasu S, Saeki M, Matsumoto T, Yamanaka S, Yatani H. Gingival fibroblasts as a promising source of induced pluripotent stem cells. PLoS One. 2010; 5(9): 1–12. doi: https://doi.org/10.1371/journal.pone.0012743
Vlahos K, Sourris K, Mayberry R, McDonald P, Bruveris FF, Schiesser J V, Bozaoglu K, Lockhart PJ, Stanley EG, Elefanty AG. Generation of iPSC lines from peripheral blood mononuclear cells from 5 healthy adults. Stem Cell Res. 2019; 34: 101380. doi: https://doi.org/10.1016/j.scr.2018.101380
Yu G, Okawa H, Okita K, Kamano Y, Wang F, Saeki M, Yatani H, Egusa H. Gingival fibroblasts as autologous feeders for induced pluripotent stem cells. J Dent Res. 2016; 95(1): 110–8. doi: https://doi.org/10.1177/0022034515611602
Cai S, Wu C, Yang W, Liang W, Yu H, Liu L. Recent advance in surface modification for regulating cell adhesion and behaviors. Nanotechnol Rev. 2020; 9(1): 971–89. doi: https://doi.org/10.1515/ntrev-2020-0076
Dhivya S, Keshav Narayan A, Logith Kumar R, Viji Chandran S, Vairamani M, Selvamurugan N. Proliferation and differentiation of mesenchymal stem cells on scaffolds containing chitosan, calcium polyphosphate and pigeonite for bone tissue engineering. Cell Prolif. 2018; 51(1). doi: https://doi.org/10.1111/cpr.12408
Chai Y, Jiang X, Ito Y, Bringas P, Han J, Rowitch DH, Soriano P, McMahon AP, Sucov HM. Fate of the mammalian cranial neural crest during tooth and mandibular morphogenesis. Development. 2000; 127(8): 1671–9. doi: https://doi.org/10.1242/dev.127.8.1671
Pispa J, Thesleff I. Mechanisms of ectodermal organogenesis. Dev Biol. 2003; 262(2): 195–205. doi: https://doi.org/10.1016/s0012-1606(03)00325-7
Sheyn D, Ben-David S, Shapiro G, De Mel S, Bez M, Ornelas L, Sahabian A, Sareen D, Da X, Pelled G, Tawackoli W, Liu Z, Gazit D, Gazit Z. Human induced pluripotent stem cells differentiate into functional mesenchymal stem cells and repair bone defects. Stem Cells Transl Med. 2016; 5(11): 1447–60. doi: https://doi.org/10.5966/sctm.2015-0311
Liu J, Chen W, Zhao Z, Xu HHK. Reprogramming of mesenchymal stem cells derived from iPSCs seeded on biofunctionalized calcium phosphate scaffold for bone engineering. Biomaterials. 2013; 34(32): 7862–72. doi: https://doi.org/10.1016/j.biomaterials.2013.07.029
Hynes K, Menicanin D, Han J, Marino V, Mrozik K, Gronthos S, Bartold PM. Mesenchymal stem cells from iPS cells facilitate periodontal regeneration. J Dent Res. 2013; 92(9): 833–9. doi: https://doi.org/10.1177/0022034513498258
Hynes K, Bright R, Marino V, Ng J, Verma PJ, Gronthos S, Bartold PM. Potential of iPSC-derived mesenchymal stromal cells for treating periodontal disease. Stem Cells Int. 2018; 2018: 2601945. doi: https://doi.org/10.1155/2018/2601945
Wu Z, Dai W, Wang P, Zhang X, Tang Y, Liu L, Wang Q, Li M, Tang C. Periostin promotes migration, proliferation, and differentiation of human periodontal ligament mesenchymal stem cells. Connect Tissue Res. 2018; 59(2): 108–19. doi: https://doi.org/10.1080/03008207.2017.1306060
Yang H, Aprecio RM, Zhou X, Wang Q, Zhang W, Ding Y, Li Y. Therapeutic effect of TSG-6 engineered iPSC-derived MSCs on experimental periodontitis in rats: A pilot study. PLoS One. 2014; 9(6): 1–7. doi: https://doi.org/10.1371/journal.pone.0100285
Li J, Xu S-Q, Zhang K, Zhang W-J, Liu H-L, Xu Z, Li H, Lou J-N, Ge L-H, Xu B-H. Treatment of gingival defects with gingival mesenchymal stem cells derived from human fetal gingival tissue in a rat model. Stem Cell Res Ther. 2018; 9(1): 27. doi: https://doi.org/10.1186/s13287-017-0751-7
Suardita K. The potential application of stem cell in dentistry. Dent J. 2006; 39(4): 177–80. doi: https://doi.org/10.20473/j.djmkg.v39.i4.p177-180
Wu M, Wang J, Zhang Y, Liu H, Dong F. Mineralization induction of gingival fibroblasts and construction of a sandwich tissue-engineered complex for repairing periodontal defects. Med Sci Monit. 2018; 24: 1112–23. doi: https://doi.org/10.12659/MSM.908791
Zhang H, Liu S, Zhu B, Xu Q, Ding Y, Jin Y. Composite cell sheet for periodontal regeneration: crosstalk between different types of MSCs in cell sheet facilitates complex periodontal-like tissue regeneration. Stem Cell Res Ther. 2016; 7(1): 1–15. doi: https://doi.org/10.1186/s13287-016-0417-x
Hu J, Cao Y, Xie Y, Wang H, Fan Z, Wang J, Zhang C, Wang J, Wu CT, Wang S. Periodontal regeneration in swine after cell injection and cell sheet transplantation of human dental pulp stem cells following good manufacturing practice. Stem Cell Res Ther. 2016; 7(1): 1–11. doi: https://doi.org/10.1186/s13287-016-0362-8
Ryu NE, Lee SH, Park H. Spheroid culture system methods and applications for mesenchymal stem cells. Cells. 2019; 8(12): 1–13. doi: https://doi.org/10.3390/cells8121620
Soares RMD, Siqueira NM, Prabhakaram MP, Ramakrishna S. Electrospinning and electrospray of bio-based and natural polymers for biomaterials development. Mater Sci Eng C Mater Biol Appl. 2018; 92: 969–82. doi: https://doi.org/10.1016/j.msec.2018.08.004
Tao O, Kort-Mascort J, Lin Y, Pham HM, Charbonneau AM, ElKashty OA, Kinsella JM, Tran SD. The applications of 3D printing for craniofacial tissue engineering. Micromachines. 2019; 10(7): 480. doi: https://doi.org/10.3390/mi10070480
Ma Y, Xie L, Yang B, Tian W. Three-dimensional printing biotechnology for the regeneration of the tooth and tooth-supporting tissues. Biotechnol Bioeng. 2019; 116(2): 452–68. doi: https://doi.org/10.1002/bit.26882
Pacelli S, Basu S, Whitlow J, Chakravarti A, Acosta F, Varshney A, Modaresi S, Berkland C, Paul A. Strategies to develop endogenous stem cell-recruiting bioactive materials for tissue repair and regeneration. Adv Drug Deliv Rev. 2017; 120: 50–70. doi: https://doi.org/10.1016/j.addr.2017.07.011
Li X, He X-T, Yin Y, Wu R-X, Tian B-M, Chen F-M. Administration of signalling molecules dictates stem cell homing for in situ regeneration. J Cell Mol Med. 2017; 21(12): 3162–77. doi: https://doi.org/10.1111/jcmm.13286
Okita K, Matsumura Y, Sato Y, Okada A, Morizane A, Okamoto S, Hong H, Nakagawa M, Tanabe K, Tezuka K, Shibata T, Kunisada T, Takahashi M, Takahashi J, Saji H, Yamanaka S. A more efficient method to generate integration-free human iPS cells. Nat Methods. 2011; 8(5): 409–12. doi: https://doi.org/10.1038/nmeth.1591
Copyright (c) 2023 Dental Journal
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
- Every manuscript submitted to must observe the policy and terms set by the Dental Journal (Majalah Kedokteran Gigi).
- Publication rights to manuscript content published by the Dental Journal (Majalah Kedokteran Gigi) is owned by the journal with the consent and approval of the author(s) concerned.
- Full texts of electronically published manuscripts can be accessed free of charge and used according to the license shown below.
- The Dental Journal (Majalah Kedokteran Gigi) is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License