The effect of nanoparticle tooth grafts on osteoblast stimulation in the first stages of the bone healing process in Wistar rats compared to the micro-tooth graft technique
Downloads
Background: The use of a bone graft in bone regeneration is challenging. Tooth graft material has been used as a bone graft alternative due to its similar composition of organic and inorganic materials close to the bone. Recently, nanotechnology has been used to improve bone graft quality. The osteoconduction rate in the defect area represents the bone graft quality. Purpose: This study aimed to compare the number of osteoblasts using nano-tooth grafts and micro-tooth grafts in Wistar rats. Methods: Wistar rats were divided into six groups: the negative control groups (examined on days 7 and 14), the micro-tooth graft groups (examined on days 7 and 14), and the nano-tooth graft groups (examined on days 7 and 14). The control group received nothing, the micro-tooth group received a micro-size tooth graft, and the nano-tooth graft group received a nano-size tooth graft on the injured femur. Histological observations of osteoblasts were carried out using a light microscope with 1000x magnification. Data were analyzed using one-way analysis of variance and least significant difference tests. Results: On day 7, the nano-tooth graft group showed a higher osteoblast number (11.75) than the micro-tooth graft group (7.5) (p = 0.039). There was no significant difference in the micro-tooth graft group compared to the control (p > 0.05). On day 14, the nano-tooth graft group showed a decrease in osteoblast number close to normal (control) (p > 0.05), while the micro-tooth graft group still experienced significant elevation. Conclusion: Nano-tooth grafts accelerate the stimulation of osteoblasts in the first stages of the healing process compared to micro-tooth grafts.
Downloads
Anita Lett J, Sagadevan S, Fatimah I, Hoque ME, Lokanathan Y, Léonard E, Alshahateet SF, Schirhagl R, Oh WC. Recent advances in natural polymer-based hydroxyapatite scaffolds: Properties and applications. Eur Polym J. 2021; 148: 110360. doi: https://doi.org/10.1016/j.eurpolymj.2021.110360
Anggaraeni PI. Alloplastic bone graft for pocket reduction after third molar surgery. Universitas Udayana; 2018. p. 1–19. web: https://erepo.unud.ac.id/id/eprint/20626/
Widhiartini IAA, Wirasuta MAG, Sukrama DM, Rai IBN. Therapeutic drug monitoring of rifampicin, isoniazid, and pyrazinamide in newly-diagnosed pulmonary tuberculosis outpatients in Denpasar area. Bali Med J. 2019; 8(1): 107–13. doi: https://doi.org/10.15562/bmj.v8i1.1304
Khanijou M, Seriwatanachai D, Boonsiriseth K, Suphangul S, Pairuchvej V, Srisatjaluk RL, Wongsirichat N. Bone graft material derived from extracted tooth: A review literature. J Oral Maxillofac Surgery, Med Pathol. 2019; 31(1): 1–7. doi: https://doi.org/10.1016/j.ajoms.2018.07.004
Kaur N. Natural teeth-a novel biomaterial for bone regenration. Online J Dent Oral Heal. 2021; 4(2): 1–3. doi: https://doi.org/10.33552/OJDOH.2021.04.000584
Dilip Bhalla N, R Patil S, A Belludi S, Prabhu A, HR V, Dani S, Birla A. Autogenous Tooth Bone Graft - A Biomimetic Promise for Regenerative Dentistry. Acta Sci Dent Scienecs. 2019; 3(9): 56–62. doi: https://doi.org/10.31080/asds.2019.03.0622
Mozartha M. Hidroksiapatit dan aplikasinya di bidang kedokteran gigi. Cakradonya Dent J. 2015; 7(2): 835–41. web: https://jurnal.usk.ac.id/CDJ/article/view/10451/0
Du M, Chen J, Liu K, Xing H, Song C. Recent advances in biomedical engineering of nano-hydroxyapatite including dentistry, cancer treatment and bone repair. Compos Part B Eng. 2021; 215: 108790. doi: https://doi.org/10.1016/j.compositesb.2021.108790
Rajula MpB, Narayanan V, Venkatasubbu Gd, Mani R, Sujana A. Nano-hydroxyapatite: A driving force for bone tissue engineering. J Pharm Bioallied Sci. 2021; 13(5): S11–4. doi: https://doi.org/10.4103/jpbs.JPBS_683_20
Ramadhani T, Sari RP, W W. Efektivitas kombinasi pemberian minyak ikan lemuru (Sardinella longiceps) dan aplikasi hidroksiapatit terhadap ekspresi FGF-2 pada proses bone healing. Dent J Kedokt Gigi. 2016; 10(1): 20–30. web: https://journal-denta.hangtuah.ac.id/index.php/jurnal/article/view/12
Ardhiyanto HB. Stimulasi osteoblas oleh hidroksiapatit sebagai material bone graft pada proses penyembuhan tulang. Stomatognatic (J K G Unej). 2012; 9(3): 162–4. web: https://jurnal.unej.ac.id/index.php/STOMA/article/view/2138
Fatemeh Mirjalili, Navabazam A, Samanizadeh N. Preparation of hydroxyapatite nanoparticles from natural teeth. Russ J Nondestruct Test. 2021; 57(2): 152–62. doi: https://doi.org/10.1134/S1061830921020091
Pilloni A, Pompa G, Saccucci M, Di Carlo G, Rimondini L, Brama M, Zeza B, Wannenes F, Migliaccio S. Analysis of human alveolar osteoblast behavior on a nano-hydroxyapatite substrate: an in vitro study. BMC Oral Health. 2014; 14(1): 22. doi: https://doi.org/10.1186/1472-6831-14-22
Pascawinata A, Prihartiningsih P, Dwirahardjo B. Perbandingan proses penyembuhan tulang antara implantasi hidroksiapatit nanokristalin dan hidroksiapatit mikrokristalin (Kajian pada tulang tibia kelinci). B-Dent, J Kedokt Gigi Univ Baiturrahmah. 2018; 1(1): 1–10. doi: https://doi.org/10.33854/JBDjbd.45
Kim Y-K, Lee J, Um I-W, Kim K-W, Murata M, Akazawa T, Mitsugi M. Tooth-derived bone graft material. J Korean Assoc Oral Maxillofac Surg. 2013; 39(3): 103–11. doi: https://doi.org/10.5125/jkaoms.2013.39.3.103
Li JJ, Kawazoe N, Chen G. Gold nanoparticles with different charge and moiety induce differential cell response on mesenchymal stem cell osteogenesis. Biomaterials. 2015; 54: 226–36. doi: https://doi.org/10.1016/j.biomaterials.2015.03.001
Mahmoud NS, Mohamed MR, Ali MAM, Aglan HA, Amr KS, Ahmed HH. Nanomaterial-induced mesenchymal stem cell differentiation into osteoblast for counteracting bone resorption in the osteoporotic rats. Tissue Cell. 2021; 73: 101645. doi: https://doi.org/10.1016/j.tice.2021.101645
Wu Y, Liu C, Gao M, Liang Q, Jiang Y. Effect of titanium nanoparticles on osteoblast proliferation. Nanosci Nanotechnol Lett. 2020; 12(4): 455–60. doi: https://doi.org/10.1166/nnl.2020.3126
Brannigan K, Griffin M. An update into the application of nanotechnology in bone healing. Open Orthop J. 2016; 10(1): 808–23. doi: https://doi.org/10.2174/1874325001610010808
Kumar S, Dewi AH, Listyarifah D, Ana ID. Remodeling capacity of femoral bone defect by POP-CHA bone substitute: A study in rats' osteoclast (First series of POP-based bone graft improvement). Indones J Dent Res. 2015; 1(2): 116. doi: https://doi.org/10.22146/theindjdentres.10008
Griffin M, Kalaskar D, Seifalian A, Butler P. An update on the application of nanotechnology in bone tissue engineering. Open Orthop J. 2016; 10(1): 836–48. doi: https://doi.org/10.2174/1874325001610010836
Liang W, Ding P, Li G, Lu E, Zhao Z. Hydroxyapatite nanoparticles facilitate osteoblast differentiation and bone formation within sagittal suture during expansion in rats. Drug Des Devel Ther. 2021; 15: 905–17. doi: https://doi.org/10.2147/DDDT.S299641
Vidyahayati IL, Dewi AH, Ana ID. Pengaruh substitusi tulang dengan hidroksiapatit (HAp) terhadap proses remodeling tulang. Media Med Muda. 2016; 1(3): 157–64. web: https://ejournal2.undip.ac.id/index.php/mmm/article/view/2608/0
Copyright (c) 2023 Dental Journal
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
- Every manuscript submitted to must observe the policy and terms set by the Dental Journal (Majalah Kedokteran Gigi).
- Publication rights to manuscript content published by the Dental Journal (Majalah Kedokteran Gigi) is owned by the journal with the consent and approval of the author(s) concerned.
- Full texts of electronically published manuscripts can be accessed free of charge and used according to the license shown below.
- The Dental Journal (Majalah Kedokteran Gigi) is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License