The characteristics of swelling and biodegradation tests of bovine amniotic membrane-hydroxyapatite biocomposite
Downloads
Background: A good biocomposite is a structure that can provide opportunities for cells to adhere, proliferate, and differentiate. It is affected by the characteristics of a material. As bone tissue regeneration occurs, biomaterials must have a high swelling ability and low biodegradability. The high swelling capability will have a larger surface area that can support maximal cell attachment and proliferation on the biocomposite surface, which accelerates the regeneration process of bone defects. Purpose: The study aimed to analyze the characteristics of swelling and biodegradation of bovine amniotic membrane-hydroxyapatite (BAM-HA) biocomposite with various ratios. Methods: The BAM-HA biocomposite with a ratio of 30:70, 35:65, and 40:60 (w/w) was synthesized using a freeze-dry method. The swelling test was done by measuring the initial weight and final weight after being soaked in phosphate-buffered saline for 24 hours and the biodegradation test was done by measuring the initial weight and final weight after being soaked in simulated body fluid for seven days. Results: The swelling percentage of BAM-HA biocomposite at each ratio of 30:70, 35:65, and 40:60 (w/w) was 303.90%, 477.94%, and 574.19%. The biodegradation percentage of BAM-HA biocomposite at each ratio of 30:70, 35:65, and 40:60 was 9.43%, 11.05%, and 12.02%. Conclusion: The BAM-HA biocomposite with a ratio of 40:60 (w/w) has the highest swelling percentage while the 30:70 (w/w) ratio has the lowest percentage of biodegradation.
Downloads
Elkhenany H, El-Derby A, Abd Elkodous M, Salah RA, Lotfy A, El-Badri N. Applications of the amniotic membrane in tissue engineering and regeneration: the hundred-year challenge. Stem Cell Res Ther. 2022; 13(1): 8. doi: https://doi.org/10.1186/s13287-021-02684-0
Schmiedova I, Dembickaja A, Kiselakova L, Nowakova B, Slama P. Using of amniotic membrane derivatives for the treatment of chronic wounds. Membranes (Basel). 2021; 11(12): 941. doi: https://doi.org/10.3390/membranes11120941
Kumar A, Chandra RV, Reddy AA, Reddy BH, Reddy C, Naveen A. Evaluation of clinical, antiinflammatory and antiinfective properties of amniotic membrane used for guided tissue regeneration: A randomized controlled trial. Dent Res J (Isfahan). 2015; 12(2): 127–35. pubmed: http://www.ncbi.nlm.nih.gov/pubmed/25878677
Faadhila T, Valentina M, Munadziroh E, Nirwana I, Soekartono H, Surboyo MC. Bovine sponge amnion stimulates socket healing: A histological analysis. J Adv Pharm Technol Res. 2021; 12(1): 99. doi: https://doi.org/10.4103/japtr.JAPTR_128_20
Putra NHD, Matulatan F, Wibowo MD, Danardono E. Effects of dried bovine amniotic membrane as prosthetics of abdominal fascial defect closure observed by the expression of platelet-derived growth factor in Rattus norvegicus wistar strain. Syst Rev Pharm. 2020; 11(6): 987–91. doi: https://doi.org/10.31838/srp.2020.6.140
Leal"Marin S, Kern T, Hofmann N, Pogozhykh O, Framme C, Börgel M, Figueiredo C, Glasmacher B, Gryshkov O. Human amniotic membrane: A review on tissue engineering, application, and storage. J Biomed Mater Res Part B Appl Biomater. 2021; 109(8): 1198–215. doi: https://doi.org/10.1002/jbm.b.34782
Dadkhah Tehrani F, Firouzeh A, Shabani I, Shabani A. A review on modifications of amniotic membrane for biomedical applications. Front Bioeng Biotechnol. 2021; 8: 606982. doi: https://doi.org/10.3389/fbioe.2020.606982
Nurhaeini CSW, Komara I. Socket preservation. Padjadjaran J Dent. 2015; 27(3): 133–8. doi: https://doi.org/10.24198/pjd.vol27no3.13541
Arifin A, Mahyudin F, Edward M. The clinical and radiological outcome of bovine hydroxyapatite (bio hydrox) as boneGraft. J Orthop Traumatol Surabaya. 2020; 9(1): 9–16. doi: https://doi.org/10.20473/joints.v9i1.2020.9-16
Kattimani VS, Kondaka S, Lingamaneni KP. Hydroxyapatite–-Past, present, and future in bone regeneration. Bone Tissue Regen Insights. 2016; 7: BTRI.S36138. doi: https://doi.org/10.4137/BTRI.S36138
Rujitanapanich S, Kumpapan P, Wanjanoi P. Synthesis of hydroxyapatite from oyster shell via precipitation. Energy Procedia. 2014; 56: 112–7. doi: https://doi.org/10.1016/j.egypro.2014.07.138
Ardhiyanto HB. Peran hidroksiapatit sebagai material bone graft dalam menstimulasi kepadatan kolagen tipe L pada proses penyembuhan tulang. Stomatognaic - J Kedokt Gigi. 2012; 9(1): 16–8. web: https://jurnal.unej.ac.id/index.php/STOMA/article/view/2079
Yuliati A, Kartikasari N, Munadziroh E, Rianti D. The profile of crosslinked bovine hydroxyapatite gelatin chitosan scaffolds with 0.25% glutaraldehyde. J Int Dent Med Res. 2017; 10(1): 151–5. pdf: http://www.jidmr.com/journal/wp-content/uploads/2017/02/27D17_350_Anita_Yuliati.pdf
Saputra AAH, Triyono J, Triyono T. Bovine bone hidroksiapatite materials mechanics properties at 900°C and 1200°C of calcination temperature. Mek Maj Ilm Mek. 2017; 16(1): 26–30. doi: https://doi.org/10.20961/mekanika.v16i1.35050
Ratnayake JTB, Mucalo M, Dias GJ. Substituted hydroxyapatites for bone regeneration: A review of current trends. J Biomed Mater Res Part B Appl Biomater. 2017; 105(5): 1285–99. doi: https://doi.org/10.1002/jbm.b.33651
Shoichet MS. Polymer scaffolds for biomaterials applications. Macromolecules. 2010; 43(2): 581–91. doi: https://doi.org/10.1021/ma901530r
BružauskaitÄ— I, BironaitÄ— D, Bagdonas E, BernotienÄ— E. Scaffolds and cells for tissue regeneration: different scaffold pore sizes”different cell effects. Cytotechnology. 2016; 68(3): 355–69. doi: https://doi.org/10.1007/s10616-015-9895-4
Kartikasari N, Yuliati A, Listiana I, Setijanto D, Suardita K, Ariani MD, Sosiawan A. Characteristic of bovine hydroxyapatite-gelatin-chitosan scaffolds as biomaterial candidate for bone tissue engineering. In: 2016 IEEE EMBS Conference on Biomedical Engineering and Sciences (IECBES). Kuala Lumpur, Malaysia: IEEE; 2016. p. 623–6. doi: https://doi.org/10.1109/IECBES.2016.7843524
Azhar FF, Olad A, Salehi R. Fabrication and characterization of chitosan-gelatin/nanohydroxyapatite- polyaniline composite with potential application in tissue engineering scaffolds. Des Monomers Polym. 2014; 17(7): 654–67. doi: https://doi.org/10.1080/15685551.2014.907621
Mohamed KR, Beherei HH, El-Rashidy ZM. In vitro study of nano-hydroxyapatite/chitosan–gelatin composites for bio-applications. J Adv Res. 2014; 5(2): 201–8. doi: https://doi.org/10.1016/j.jare.2013.02.004
Maji K, Dasgupta S, Pramanik K, Bissoyi A. Preparation and evaluation of gelatin-chitosan-nanobioglass 3D porous scaffold for bone tissue engineering. Int J Biomater. 2016; 2016: 9825659. doi: https://doi.org/10.1155/2016/9825659
Bose S, Roy M, Bandyopadhyay A. Recent advances in bone tissue engineering scaffolds. Trends Biotechnol. 2012; 30(10): 546–54. doi: https://doi.org/10.1016/j.tibtech.2012.07.005
Melek LN. Tissue engineering in oral and maxillofacial reconstruction. Tanta Dent J. 2015; 12(3): 211–23. doi: https://doi.org/10.1016/j.tdj.2015.05.003
Edgar L, McNamara K, Wong T, Tamburrini R, Katari R, Orlando G. Heterogeneity of scaffold biomaterials in tissue engineering. Materials (Basel). 2016; 9(5): 332. doi: https://doi.org/10.3390/ma9050332
Tam TT, Todo M, Cheong KY, Hamid ZAA. Evaluation of cell viability of porous scaffold fabricated via freeze-drying technique for vascular tissue engineering. In: AIP Conference Proceedings. 2020. p. 020007. doi: https://doi.org/10.1063/5.0017437
Wattanutchariya W, Changkowchai W. Characterization of porous scaffold from chitosan-gelatin/hydroxyapatite for bone grafting. In: The International MultiConference of Engineers and Computer Scientists Vol II. Hongkong: Chiang Mai University; 2014. p. 1–5. web: http://cmuir.cmu.ac.th/jspui/handle/6653943832/53387
Asaeli AP, Yuliati A, Budhy TI, Wilda S, Silalahi I, Santoso D. The profile of cross-linked chitosan and collagen derived-chicken shank scaffold as biomaterials in tissue engineering. J Int Dent Med Res. 2019; 12(1): 6–11. pdf: http://www.jidmr.com/journal/wp-content/uploads/2019/04/2-D18_673_Agrippine_Putricia_Asaeli_Anita_Yuliati.pdf
Gunasekaran D, Thada R, Jeyakumar GFS, Manimegalai NP, Shanmugam G, Sivagnanam UT. Physicochemical characterization and self-assembly of human amniotic membrane and umbilical cord collagen: A comparative study. Int J Biol Macromol. 2020; 165: 2920–33. doi: https://doi.org/10.1016/j.ijbiomac.2020.10.107
Anusavice KJ, Shen C, Rawls HR. Phillips' science of dental materials. 12th ed. Philadelpia: Saunders; 2013. p. 592. web: https://evolve.elsevier.com/cs/product/9781455748136
Ari MDA, Yuliati A, Rahayu RP, Saraswati D. The differences scaffold composition in pore size and hydrophobicity properties as bone regeneration biomaterial. J Int Dent Med Res. 2018; 11(1): 318–22. pdf: http://www.jidmr.com/journal/wp-content/uploads/2018/04/61D17_496_Muhammad_Dimas_Aditya_Ari.pdf
Lee J, Yun H. Hydroxyapatite-containing gelatin/chitosan microspheres for controlled release of lysozyme and enhanced cytocompatibility. J Mater Chem B. 2014; 2(9): 1255–63. doi: https://doi.org/10.1039/c3tb21553a
Wang Q, Wang Q, Wan C. The effect of porosity on the structure and properties of calcium polyphosphate bioceramics. Ceram - Silikaty. 2011; 55(1): 43–8. web: https://www.ceramics-silikaty.cz/index.php?page=cs_detail_doi&id=278
Copyright (c) 2023 Dental Journal
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
- Every manuscript submitted to must observe the policy and terms set by the Dental Journal (Majalah Kedokteran Gigi).
- Publication rights to manuscript content published by the Dental Journal (Majalah Kedokteran Gigi) is owned by the journal with the consent and approval of the author(s) concerned.
- Full texts of electronically published manuscripts can be accessed free of charge and used according to the license shown below.
- The Dental Journal (Majalah Kedokteran Gigi) is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License