The compressive strength and static biodegradation rate of chitosan-gelatin limestone-based carbonate hydroxyapatite composite scaffold
Downloads
Background: One of the main components in tissue engineering is the scaffold, which may serve as a medium to support cell and tissue growth. Scaffolds must have good compressive strength and controlled biodegradability to show biological activities while treating bone defects. This study uses Chitosan-gelatin (C–G) with good flexibility and elasticity and high-strength carbonate hydroxyapatite (CHA), which may be the ideal scaffold for tissue engineering. Purpose: To analyze the compressive strength and static biodegradation rate within various ratios of C–G and CHA (C–G:CHA) scaffold as a requirement for bone tissue engineering. Methods: The scaffold is synthesized from C–G:CHA with three ratio variations, which are 40:60, 30:70, and 20:80 (weight for weight [w/w]), made with a freeze-drying method. The compressive strengths are then tested. The biodegradation rate is tested by soaking the scaffold in simulated body fluid for 1, 3, 7, 14, and 21 days. Data are analyzed with a one-way ANOVA parametric test. Results: The compressive strength of each ratio of C–G:CHA scaffold 40:60 (w/w), 30:70 (w/w), and 20:80 (w/w), consecutively, are 4.2 Megapascals (MPa), 3.3 MPa, 2.2 MPa, and there are no significant differences with the p= 0.069 (p>0.05). The static biodegradation percentage after 21 days on each ratio variation of C–G:CHA scaffold 40:60 (w/w), 30:70 (w/w), and 20:80 (w/w) is 25.98%, 24.67%, and 20.64%. One-way ANOVA Welch test shows the result of the p-value as p<0.05. Conclusion: The compressive strength and static biodegradation of the C–G:CHA scaffold with ratio variations of 40:60 (w/w), 30:70 (w/w), and 20:80(w/w) fulfilled the requirements as a scaffold for bone tissue engineering.
Downloads
Prasadh S, Wong RCW. Unraveling the mechanical strength of biomaterials used as a bone scaffold in oral and maxillofacial defects. Oral Sci Int. 2018; 15(2): 48–55. doi: https://doi.org/10.1016/S1348-8643(18)30005-3
Ibrahim A. 3D bioprinting bone. In: 3D Bioprinting for Reconstructive Surgery. Elsevier; 2018. p. 245–75. doi: https://doi.org/10.1016/B978-0-08-101103-4.00015-6
Shukla S, Chug A, Mahesh L, Singh S, Singh K. Optimal management of intrabony defects: current insights. Clin Cosmet Investig Dent. 2019; 11: 19–25. doi: https://doi.org/10.2147/CCIDE.S166164
Ghassemi T, Shahroodi A, Ebrahimzadeh MH, Mousavian A, Movaffagh J, Moradi A. Current concepts in scaffolding for bone tissue engineering. Arch bone Jt Surg. 2018; 6(2): 90–9. doi: https://doi.org/10.22038/abjs.2018.26340.1713
Collins MN, Ren G, Young K, Pina S, Reis RL, Oliveira JM. Scaffold fabrication technologies and structure/function properties in bone tissue engineering. Adv Funct Mater. 2021; 31(21): 2010609. doi: https://doi.org/10.1002/adfm.202010609
Witzler M, Ottensmeyer PF, Gericke M, Heinze T, Tobiasch E, Schulze M. Non-cytotoxic agarose/hydroxyapatite composite scaffolds for drug release. Int J Mol Sci. 2019; 20(14): 3565. doi: https://doi.org/10.3390/ijms20143565
Samadian H, Farzamfar S, Vaez A, Ehterami A, Bit A, Alam M, Goodarzi A, Darya G, Salehi M. A tailored polylactic acid/polycaprolactone biodegradable and bioactive 3D porous scaffold containing gelatin nanofibers and Taurine for bone regeneration. Sci Rep. 2020; 10(1): 13366. doi: https://doi.org/10.1038/s41598-020-70155-2
Darus F, Jaafar M. Enhancement of carbonate apatite scaffold properties with surface treatment and alginate and gelatine coating. J Porous Mater. 2020; 27(3): 831–42. doi: https://doi.org/10.1007/s10934-019-00848-1
Safarzadeh M, Chee CF, Ramesh S, Fauzi MNA. Effect of sintering temperature on the morphology, crystallinity and mechanical properties of carbonated hydroxyapatite (CHA). Ceram Int. 2020; 46(17): 26784–9. doi: https://doi.org/10.1016/j.ceramint.2020.07.153
Li J, Jansen JA, Walboomers XF, van den Beucken JJ. Mechanical aspects of dental implants and osseointegration: A narrative review. J Mech Behav Biomed Mater. 2020; 103: 103574. doi: https://doi.org/10.1016/j.jmbbm.2019.103574
Ghiasi B, Sefidbakht Y, Rezaei M. Hydroxyapatite for biomedicine and drug delivery. In: Nanomaterials for advanced biological applications. Springer; 2019. p. 85–120. doi: https://doi.org/10.1007/978-3-030-10834-2_4
Zheng X, Liu Y, Liu Y, Pan Y, Yao Q. Novel three"dimensional bioglass functionalized gelatin nanofibrous scaffolds for bone regeneration. J Biomed Mater Res Part B Appl Biomater. 2021; 109(4): 517–26. doi: https://doi.org/10.1002/jbm.b.34720
Noor Khairiyah Hanisah H, Muhammad Ridhwan R, Nurazreena A. Synthesis of porous carbonate apatite/gelatin scaffolds via freeze drying method. J Phys Conf Ser. 2018; 1082: 012004. doi: https://doi.org/10.1088/1742-6596/1082/1/012004
Oryan A, Alidadi S, Bigham-Sadegh A, Moshiri A. Comparative study on the role of gelatin, chitosan and their combination as tissue engineered scaffolds on healing and regeneration of critical sized bone defects: an in vivo study. J Mater Sci Mater Med. 2016; 27(10): 155. doi: https://doi.org/10.1007/s10856-016-5766-6
Iancu L, Ion R-M, Grigorescu RM, Ghioca PN, Spurcaciu B, David ME, Andrei RE, Ghiurea M, Stirbescu RM, Bucurica A. Carbonated hydroxyapatite substituted with magnesium for stone consolidation. In: The 16th International Symposium "Priorities of Chemistry for a Sustainable Development” PRIOCHEM. Basel Switzerland: MDPI; 2020. p. 59. doi: https://doi.org/10.3390/proceedings2020057059
He J, Hu X, Cao J, Zhang Y, Xiao J, Peng L, Chen D, Xiong C, Zhang L. Chitosan-coated hydroxyapatite and drug-loaded polytrimethylene carbonate/polylactic acid scaffold for enhancing bone regeneration. Carbohydr Polym. 2021; 253: 117198. doi: https://doi.org/10.1016/j.carbpol.2020.117198
Januariyasa IK, Yusuf Y. Porous carbonated hydroxyapatite-based scaffold using simple gas foaming method. J Asian Ceram Soc. 2020; 8(3): 634–41. doi: https://doi.org/10.1080/21870764.2020.1770938
Fereshteh Z. Freeze-drying technologies for 3D scaffold engineering. In: Functional 3D Tissue Engineering Scaffolds. Elsevier; 2018. p. 151–74. doi: https://doi.org/10.1016/B978-0-08-100979-6.00007-0
Re F, Sartore L, Moulisova V, Cantini M, Almici C, Bianchetti A, Chinello C, Dey K, Agnelli S, Manferdini C, Bernardi S, Lopomo NF, Sardini E, Borsani E, Rodella LF, Savoldi F, Paganelli C, Guizzi P, Lisignoli G, Magni F, Salmeron-Sanchez M, Russo D. 3D gelatin-chitosan hybrid hydrogels combined with human platelet lysate highly support human mesenchymal stem cell proliferation and osteogenic differentiation. J Tissue Eng. 2019; 10: 204173141984585. doi: https://doi.org/10.1177/2041731419845852
Georgopoulou A, Papadogiannis F, Batsali A, Marakis J, Alpantaki K, Eliopoulos AG, Pontikoglou C, Chatzinikolaidou M. Chitosan/gelatin scaffolds support bone regeneration. J Mater Sci Mater Med. 2018; 29(5): 59. doi: https://doi.org/10.1007/s10856-018-6064-2
Roohani-Esfahani S-I, Newman P, Zreiqat H. Design and fabrication of 3D printed scaffolds with a mechanical strength comparable to cortical bone to repair large bone defects. Sci Rep. 2016; 6(1): 19468. doi: https://doi.org/10.1038/srep19468
Sutthi R, Kaewwinud N, Chindaprasirt P, Mutoh Y, Laonapakula T. Effect of curing temperature and time on the mechanical properties of hydroxyapatite/calcined kaolin. ScienceAsia. 2018; 44(6): 397. doi: https://doi.org/10.2306/scienceasia1513-1874.2018.44.397
Kim T-R, Kim M-S, Goh TS, Lee JS, Kim YH, Yoon S-Y, Lee C-S. Evaluation of structural and mechanical properties of porous artificial bone scaffolds fabricated via advanced TBA-based freeze-gel casting technique. Appl Sci. 2019; 9(9): 1965. doi: https://doi.org/10.3390/app9091965
Mondal S, Nguyen TP, Pham VH, Hoang G, Manivasagan P, Kim MH, Nam SY, Oh J. Hydroxyapatite nano bioceramics optimized 3D printed poly lactic acid scaffold for bone tissue engineering application. Ceram Int. 2020; 46(3): 3443–55. doi: https://doi.org/10.1016/j.ceramint.2019.10.057
Chi H, Song X, Song C, Zhao W, Chen G, Jiang A, Wang X, Yu T, Zheng L, Yan J. Chitosan-gelatin scaffolds incorporating decellularized platelet-rich fibrin promote bone regeneration. ACS Biomater Sci Eng. 2019; 5(10): 5305–15. doi: https://doi.org/10.1021/acsbiomaterials.9b00788
Bose S, Roy M, Bandyopadhyay A. Recent advances in bone tissue engineering scaffolds. Trends Biotechnol. 2012; 30(10): 546–54. doi: https://doi.org/10.1016/j.tibtech.2012.07.005
Maji K, Dasgupta S, Kundu B, Bissoyi A. Development of gelatin-chitosan-hydroxyapatite based bioactive bone scaffold with controlled pore size and mechanical strength. J Biomater Sci Polym Ed. 2015; 26(16): 1190–209. doi: https://doi.org/10.1080/09205063.2015.1082809
Fanny G. Uji karakteristik scaffold kitosan gelatin karbonat apatit batu kapur Balai Besar Keramik. Thesis. Universitas Airlangga. Surabaya; 2020. p. 22–34. web: https://repository.unair.ac.id/104292/
Karina RY. Compressive strength scaffold komposit hidroksiapatit Balai Besar Keramik dengan berbagai rasio. Thesis. Universitas Airlangga. Surabaya; 2020. p. 22–4. web: https://repository.unair.ac.id/104196/
Wang X, Yu T, Chen G, Zou J, Li J, Yan J. Preparation and characterization of a chitosan/gelatin/extracellular matrix scaffold and its application in tissue engineering. Tissue Eng Part C Methods. 2017; 23(3): 169–79. doi: https://doi.org/10.1089/ten.tec.2016.0511
Shahbazi S, Zamanian A, Pazouki M, Jafari Y. Introducing an attractive method for total biomimetic creation of a synthetic biodegradable bioactive bone scaffold based on statistical experimental design. Mater Sci Eng C. 2018; 86: 109–20. doi: https://doi.org/10.1016/j.msec.2017.12.033
Tamburaci S, Tihminlioglu F. Biosilica incorporated 3D porous scaffolds for bone tissue engineering applications. Mater Sci Eng C. 2018; 91: 274–91. doi: https://doi.org/10.1016/j.msec.2018.05.040
Rianti D, Fanny G, Nathania RV, Purnamasari AE, Putri RR, Soekartono H, Soebagio S, Yuliati A, Syahrom A. The characteristics, swelling ratio and water content percentage of chitosan-gelatin/limestone-based carbonate hydroxyapatite composite scaffold. Int J Integr Eng. 2022; 14(2): 13–23. doi: https://doi.org/10.30880/ijie.2022.14.02.003
Aufan MR. Sintesis scaffold alginat-kitosan-karbonat apatit sebagai bone graft menggunakan metode freeze drying. J Biofisika. 2012; 8(1): 16–24. web: http://jesl.journal.ipb.ac.id/index.php/biofisika/article/view/9328
Dressler M, Dombrowski F, Simon U, Börnstein J, Hodoroaba VD, Feigl M, Grunow S, Gildenhaar R, Neumann M. Influence of gelatin coatings on compressive strength of porous hydroxyapatite ceramics. J Eur Ceram Soc. 2011; 31(4): 523–9. doi: https://doi.org/10.1016/j.jeurceramsoc.2010.11.004
Bello AB, Kim D, Kim D, Park H, Lee S-H. Engineering and functionalization of gelatin biomaterials: from cell culture to medical applications. Tissue Eng Part B Rev. 2020; 26(2): 164–80. doi: https://doi.org/10.1089/ten.teb.2019.0256
Gerhardt L-C, Boccaccini AR. Bioactive glass and glass-ceramic scaffolds for bone tissue engineering. Materials (Basel). 2010; 3(7): 3867–910. doi: https://doi.org/10.3390/ma3073867
Escobar-Sierra DM, Martins J, Ossa-Orozco CP. Chitosan/hydroxyapatite scaffolds for tissue engineering manufacturing method effect comparison. Rev Fac Ing Univ Antioquia. 2015; (75): 24–35. doi: https://doi.org/10.17533/udea.redin.n75a04
Levengood SKL, Zhang M. Chitosan-based scaffolds for bone tissue engineering. J Mater Chem B. 2014; 2(21): 3161. doi: https://doi.org/10.1039/c4tb00027g
Waletzko-Hellwig J, Saemann M, Schulze M, Frerich B, Bader R, Dau M. Mechanical characterization of human trabecular and formed granulate bone cylinders processed by high hydrostatic pressure. Materials (Basel). 2021; 14(5): 1069. doi: https://doi.org/10.3390/ma14051069
Mohaghegh S, Hosseini SF, Rad MR, Khojasteh A. 3D printed composite scaffolds in bone tissue engineering: a systematic review. Curr Stem Cell Res Ther. 2022; 17(7): 648–709. doi: https://doi.org/10.2174/1574888X16666210810111754
Oftadeh R, Perez-Viloria M, Villa-Camacho JC, Vaziri A, Nazarian A. Biomechanics and mechanobiology of trabecular bone: a review. J Biomech Eng. 2015; 137(1): 010802. doi: https://doi.org/10.1115/1.4029176
Pei P, Wei D, Zhu M, Du X, Zhu Y. The effect of calcium sulfate incorporation on physiochemical and biological properties of 3D-printed mesoporous calcium silicate cement scaffolds. Microporous Mesoporous Mater. 2017; 241: 11–20. doi: https://doi.org/10.1016/j.micromeso.2016.11.031
Bahraminasab M. Challenges on optimization of 3D-printed bone scaffolds. Biomed Eng Online. 2020; 19(1): 69. doi: https://doi.org/10.1186/s12938-020-00810-2
Ghouse S, Reznikov N, Boughton OR, Babu S, Ng KCG, Blunn G, Cobb JP, Stevens MM, Jeffers JRT. The design and in vivo testing of a locally stiffness-matched porous scaffold. Appl Mater Today. 2019; 15: 377–88. doi: https://doi.org/10.1016/j.apmt.2019.02.017
Yuliati A, Kartikasari N, Munadziroh E, Rianti D. The profile of crosslinked bovine hydroxyapatite gelatin chitosan scaffolds with 0.25% glutaraldehyde. J Int Dent Med Res. 2017; 10(1): 151–5. pdf: http://www.jidmr.com/journal/wp-content/uploads/2017/02/27D17_350_Anita_Yuliati.pdf
Widyamsari NKS. Biodegradasi komposit scaffold berbasis hidroksiapatit Balai Besar Keramik. Dissertation. Universitas Airlangga. Surabaya; 2020. web: https://repository.unair.ac.id/104302/
Shuai C, Zhou Y, Yang Y, Feng P, Liu L, He C, Zhao M, Yang S, Gao C, Wu P. Biodegradation resistance and bioactivity of hydroxyapatite enhanced Mg-Zn composites via selective laser melting. Materials (Basel). 2017; 10(3): 307. doi: https://doi.org/10.3390/ma10030307
Md. Saad AP, Jasmawati N, Harun MN, Abdul Kadir MR, Nur H, Hermawan H, Syahrom A. Dynamic degradation of porous magnesium under a simulated environment of human cancellous bone. Corros Sci. 2016; 112: 495–506. doi: https://doi.org/10.1016/j.corsci.2016.08.017
Zhang K, Fan Y, Dunne N, Li X. Effect of microporosity on scaffolds for bone tissue engineering. Regen Biomater. 2018; 5(2): 115–24. doi: https://doi.org/10.1093/rb/rby001
Yadav N, Srivastava P. In vitro studies on gelatin/hydroxyapatite composite modified with osteoblast for bone bioengineering. Heliyon. 2019; 5(5): e01633. doi: https://doi.org/10.1016/j.heliyon.2019.e01633
Rodriguez I. Tissue engineering composite biomimetic gelatin sponges for bone regeneration. Thesis. Virginia Commonwelth University: Virginia; 2013. p. 23–7, 35–56. web: https://scholarscompass.vcu.edu/etd/3066
Irish J, Virdi AS, Sena K, McNulty MA, Sumner DR. Implant placement increases bone remodeling transiently in a rat model. J Orthop Res. 2013; 31(5): 800–6. doi: https://doi.org/10.1002/jor.22294
Eriksen EF. Cellular mechanisms of bone remodeling. Rev Endocr Metab Disord. 2010; 11(4): 219–27. doi: https://doi.org/10.1007/s11154-010-9153-1
Copyright (c) 2023 Dental Journal
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
- Every manuscript submitted to must observe the policy and terms set by the Dental Journal (Majalah Kedokteran Gigi).
- Publication rights to manuscript content published by the Dental Journal (Majalah Kedokteran Gigi) is owned by the journal with the consent and approval of the author(s) concerned.
- Full texts of electronically published manuscripts can be accessed free of charge and used according to the license shown below.
- The Dental Journal (Majalah Kedokteran Gigi) is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License