Ovalbumin's potential as a wound-healing medicament in tooth extraction socket by induction of cell proliferation through the ERK2 pathway in silico
Downloads
Background: The trend of studies on dental medicaments is increasing rapidly. Antibacterial or anti-inflammatory activity is most frequently studied. Ovalbumin is one of the proteins whose benefits have been studied, but these benefits are still limited because of ovalbumin's potential for proliferative bioactivity. Purpose: The aim of this study is to examine ovalbumin's potential as a woundhealing medicament through molecular docking analysis on a protein related to the extracellular signal-regulated kinases/mitogenactivated protein kinase (ERK/MAPK) signaling pathway. Methods: Ovalbumin was hydrolyzed through BIOPEP-UWM (The BIOPEPUWMâ„¢ database of bioactive peptides). Protein target and interaction were predicted using Similarity Ensemble Approach target prediction webserver, SuperPred webserver, STRING webserver, and Cytoscape version 3.9.1. Selected fragments were docked using Autodock Vina in PyRx 0.8 with Tukey's multiple comparison test and Biovia Discovery Studio version 19.1.0.18287 for visualization. Results: This study found that ovalbumin has the potential to positively regulate cell proliferation, angiogenesis, and fibroblast growth factor production. Six of the 131 fragments of ovalbumin could interact with 73 proteins, and the 20 proteins with the highest probability and score of betweenness centrality showed potential for bioactivity. Five fragments and povidone-iodine interacted inside the Adenosine triphosphate (ATP) phosphorylation site of ERK2, whereas fragment 1 (F1) and glycerin interacted outside the site. F1 could decrease the binding energy required for adenosine 5"²-[,-methylene]triphosphate or an ATP-analogue chemical compound to interact with ERK2 compared to the control, with a score that was not significant. Conclusion: Ovalbumin has the potential to induce cell proliferation by affecting ERK2-ligand interactions.
Downloads
Athanassiadis B, Walsh LJ. Aspects of solvent chemistry for calcium hydroxide medicaments. Materials (Basel). 2017; 10(10): 1219. doi: https://doi.org/10.3390/ma10101219
Manohar M, Sharma S. A survey of the knowledge, attitude, and awareness about the principal choice of intracanal medicaments among the general dental practitioners and nonendodontic specialists. Indian J Dent Res. 2018; 29(6): 716–20. doi: https://doi.org/10.4103/ijdr.IJDR_716_16
Govindaraju L, Jenarthanan S, Subramanyam D, Ajitha P. Antibacterial activity of various intracanal medicament against Enterococcus faecalis, Streptococcus mutans and Staphylococcus aureus: An In vitro study. J Pharm Bioallied Sci. 2021; 13(5): 157–61. doi: https://doi.org/10.4103/jpbs.JPBS_623_20
Kok ESK, Lim XJ, Chew SX, Ong SF, See LY, Lim SH, Wong LA, Davamani F, Nagendrababu V, Fawzy A, Daood U. Quaternary ammonium silane (k21) based intracanal medicament triggers biofilm destruction. BMC Oral Health. 2021; 21(1): 116. doi: https://doi.org/10.1186/s12903-021-01470-x
Bigliardi PL, Alsagoff SAL, El-Kafrawi HY, Pyon J-K, Wa CTC, Villa MA. Povidone iodine in wound healing: A review of current concepts and practices. Int J Surg. 2017; 44: 260–8. doi: https://doi.org/10.1016/j.ijsu.2017.06.073
Patel M, Dehadaray A. Povidone-iodine and glycerine for treatment of acute otitis externa. Saudi J Heal Sci. 2018; 7(3): 178–82. doi: https://doi.org/10.4103/sjhs.sjhs_68_18
Sun Y, Liu W-Z, Liu T, Feng X, Yang N, Zhou H-F. Signaling pathway of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis. J Recept Signal Transduct. 2015; 35(6): 600–4. doi: https://doi.org/10.3109/10799893.2015.1030412
Velnar T, Bailey T, Smrkolj V. The wound healing process: An overview of the cellular and molecular mechanisms. J Int Med Res. 2009; 37(5): 1528–42. doi: https://doi.org/10.1177/147323000903700531
Fatoki TH, Aluko RE, Udenigwe CC. In silico investigation of molecular targets, pharmacokinetics, and biological activities of chicken egg ovalbumin protein hydrolysates. J Food Bioact. 2022; 17: 34–48. doi: https://doi.org/10.31665/JFB.2022.17302
Chay Pak Ting BP, Pouliot Y, Gauthier SF, Mine Y. Fractionation of egg proteins and peptides for nutraceutical applications. In: Separation, Extraction and Concentration Processes in the Food, Beverage and Nutraceutical Industries. Elsevier; 2013. p. 595–618. doi: https://doi.org/10.1533/9780857090751.2.595
Liu Y, Ying D, Cai Y, Le X. Improved antioxidant activity and physicochemical properties of curcumin by adding ovalbumin and its structural characterization. Food Hydrocoll. 2017; 72: 304–11. doi: https://doi.org/10.1016/j.foodhyd.2017.06.007
Minkiewicz, Iwaniak, Darewicz. BIOPEP-UWM database of bioactive peptides: Current opportunities. Int J Mol Sci. 2019; 20(23): 5978. doi: https://doi.org/10.3390/ijms20235978
Keiser MJ, Roth BL, Armbruster BN, Ernsberger P, Irwin JJ, Shoichet BK. Relating protein pharmacology by ligand chemistry. Nat Biotechnol. 2007; 25(2): 197–206. doi: https://doi.org/10.1038/nbt1284
Nickel J, Gohlke B-O, Erehman J, Banerjee P, Rong WW, Goede A, Dunkel M, Preissner R. SuperPred: update on drug classification and target prediction. Nucleic Acids Res. 2014; 42(W1): W26–31. doi: https://doi.org/10.1093/nar/gku477
Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, Simonovic M, Doncheva NT, Morris JH, Bork P, Jensen LJ, Mering C von. STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019; 47(D1): D607–13. doi: https://doi.org/10.1093/nar/gky1131
Garcia O, Saveanu C, Cline M, Fromont-Racine M, Jacquier A, Schwikowski B, Aittokallio T. GOlorize: a Cytoscape plug-in for network visualization with Gene Ontology-based layout and coloring. Bioinformatics. 2007; 23(3): 394–6. doi: https://doi.org/10.1093/bioinformatics/btl605
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003; 13(11): 2498–504. doi: https://doi.org/10.1101/gr.1239303
Xia J, Benner MJ, Hancock REW. NetworkAnalyst - integrative approaches for protein–protein interaction network analysis and visual exploration. Nucleic Acids Res. 2014; 42(W1): W167–74. doi: https://doi.org/10.1093/nar/gku443
Gonzalez AC de O, Costa TF, Andrade Z de A, Medrado ARAP. Wound healing - A literature review. An Bras Dermatol. 2016; 91(5): 614–20. doi: https://doi.org/10.1590/abd1806-4841.20164741
Dallakyan S, Olson AJ. Small-molecule library screening by docking with PyRx. In: Hempe JE, Williams CH, Hong CC, editors. Chemical Biology Methods and Protocols. New York: Humana Press; 2015. p. 243–50. doi: https://doi.org/10.1007/978-1-4939-2269-7_19
Jafari M, Ansari-Pour N. Why, When and How to adjust your P values? Cell J. 2019; 20(4): 604–7. doi: https://doi.org/10.22074/cellj.2019.5992
Lechtenberg BC, Mace PD, Sessions EH, Williamson R, Stalder R, Wallez Y, Roth GP, Riedl SJ, Pasquale EB. Structure-guided strategy for the development of potent bivalent ERK inhibitors. ACS Med Chem Lett. 2017; 8(7): 726–31. doi: https://doi.org/10.1021/acsmedchemlett.7b00127
Ningsih JR, Haniastuti T, Handajani J. Re-epitelisasi luka soket pasca pencabutan gigi setelah pemberian gel getah pisang raja (Musa sapientum L) kajian histologis pada marmut (Cavia cobaya). JIKG (Jurnal Ilmu Kedokt Gigi). 2019; 2(1): 1–6. doi: https://doi.org/10.23917/jikg.v2i1.6644
Primadina N, Basori A, Perdanakusuma DS. Proses penyembuhan luka ditinjau dari aspek mekanisme seluler dan molekuler. Qanun Med - Med J Fac Med Muhammadiyah Surabaya. 2019; 3(1): 31–43. doi: https://doi.org/10.30651/jqm.v3i1.2198
Rodrigues M, Kosaric N, Bonham CA, Gurtner GC. Wound healing: A cellular perspective. Physiol Rev. 2019; 99(1): 665–706. doi: https://doi.org/10.1152/physrev.00067.2017
Ristori E, Cicaloni V, Salvini L, Tinti L, Tinti C, Simons M, Corti F, Donnini S, Ziche M. Amyloid-β precursor protein APP down-regulation alters actin cytoskeleton-interacting proteins in endothelial cells. Cells. 2020; 9(11): 2506. doi: https://doi.org/10.3390/cells9112506
Zheng Z, Li M, Jiang P, Sun N, Lin S. Peptides derived from sea cucumber accelerate cells proliferation and migration for wound healing by promoting energy metabolism and upregulating the ERK/AKT pathway. Eur J Pharmacol. 2022; 921: 174885. doi: https://doi.org/10.1016/j.ejphar.2022.174885
Uchiyama A, Nayak S, Graf R, Cross M, Hasneen K, Gutkind JS, Brooks SR, Morasso MI. SOX2 epidermal overexpression promotes cutaneous wound healing via activation of EGFR/MEK/ERK signaling mediated by EGFR ligands. J Invest Dermatol. 2019; 139(8): 1809-1820.e8. doi: https://doi.org/10.1016/j.jid.2019.02.004
Genova RM, Meyer KJ, Anderson MG, Harper MM, Pieper AA. Neprilysin inhibition promotes corneal wound healing. Sci Rep. 2018; 8(1): 14385. doi: https://doi.org/10.1038/s41598-018-32773-9
Liu Y, Xiong W, Wang C-W, Shi J-P, Shi Z-Q, Zhou J-D. Resveratrol promotes skin wound healing by regulating the miR-212/CASP8 axis. Lab Investig. 2021; 101(10): 1363–70. doi: https://doi.org/10.1038/s41374-021-00621-6
Amtha R, Kanagalingam J. Povidone-iodine in dental and oral health: a narrative review. J Int Oral Heal. 2020; 12(5): 407. doi: https://doi.org/10.4103/jioh.jioh_89_20
Lachapelle J-M, Castel O, Casado AF, Leroy B, Micali G, Tennstedt D, Lambert J. Antiseptics in the era of bacterial resistance: a focus on povidone iodine. Clin Pract. 2013; 10(5): 579–92. doi: https://doi.org/10.2217/cpr.13.50
Su Z, Gao J, Xie Q, Wang Y, Li Y. Possible role of β-galactosidase in rheumatoid arthritis. Mod Rheumatol. 2020; 30(4): 671–80. doi: https://doi.org/10.1080/14397595.2019.1640175
Putri Kusuma AR. Pengaruh lama aplikasi dan jenis bahan pencampur serbuk kalsium hidroksida terhadap kekerasan mikro dentin saluran akar. ODONTO Dent J. 2016; 3(1): 48–54. doi: https://doi.org/10.30659/odj.3.1.48-54
Summa M, Russo D, Penna I, Margaroli N, Bayer IS, Bandiera T, Athanassiou A, Bertorelli R. A biocompatible sodium alginate/povidone iodine film enhances wound healing. Eur J Pharm Biopharm. 2018; 122: 17–24. doi: https://doi.org/10.1016/j.ejpb.2017.10.004
Copyright (c) 2023 Dental Journal
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
- Every manuscript submitted to must observe the policy and terms set by the Dental Journal (Majalah Kedokteran Gigi).
- Publication rights to manuscript content published by the Dental Journal (Majalah Kedokteran Gigi) is owned by the journal with the consent and approval of the author(s) concerned.
- Full texts of electronically published manuscripts can be accessed free of charge and used according to the license shown below.
- The Dental Journal (Majalah Kedokteran Gigi) is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License