The potential active compounds of Jatropha multifida Linn. as an anti-COVID-19 mouthwash: In silico study
Downloads
Background: Povidone-iodine 1% mouthwash is one of the products recommended for preventing and controlling COVID-19 infection in dental procedures. Jatropha multifida Linn. has the same antiseptic effect as povidone-iodine. Purpose: The objective is to determine the effectiveness and interaction effect of secondary metabolites from the latex of Jatropha multifida Linn. and povidone-iodine against the main protease (MPro) SARS-CoV-2 and the SARS-CoV-2 spike protein - ACE2 receptors. Methods: The in silico test was used in this study and carried out using the Molegro Virtual Docker software for molecular docking and BIOVIA Discovery Studio and PyMOL for visualization. Results: The results show that secondary metabolite compounds contained in the latex of Jatropha multifida Linn. have a better effectiveness potential in relation to MPro SARS-CoV-2 and SARS-CoV-2 spike protein - ACE2 receptors than povidone-iodine. Conclusion: The latex of Jatropha multifida Linn. shows potential as a preventive and curative therapy for COVID-19 in the in silico study.
Downloads
Rantam FA, Prakoeswa CRS, Tinduh D, Nugraha J, Susilowati H, Wijaya AY, Puspaningsih NNT, Puspitasari D, Husada D, Kurniati ND, Aryati A. Characterization of SARS-CoV-2 East Java isolate, Indonesia. F1000Research. 2021; 10: 480. doi: https://doi.org/10.12688/f1000research.53137.1
Rantam FA, Kharisma VD, Sumartono C, Nugraha J, Wijaya AY, Susilowati H, Kuncorojakti S, Nugraha AP. Molecular docking and dynamic simulation of conserved B cell epitope of SARS-CoV-2 glycoprotein Indonesian isolates: an immunoinformatic approach. F1000Research. 2021; 10: 813. doi: https://doi.org/10.12688/f1000research.54258.1
Yang J, Petitjean SJL, Koehler M, Zhang Q, Dumitru AC, Chen W, Derclaye S, Vincent SP, Soumillion P, Alsteens D. Molecular interaction and inhibition of SARS-CoV-2 binding to the ACE2 receptor. Nat Commun. 2020; 11(1): 4541. doi: https://doi.org/10.1038/s41467-020-18319-6
Kharisma VD, Ansori ANM, Dian FA, Rizky WC, Dings TGA, Zainul R, Nugraha AP. Molecular docking and dynamic simulation of entry inhibitor from Tamarindus Indica bioactive compounds against Sars-Cov-2 infection via viroinformatics study. Biochem Cell Arch. 2021; 21(2): 3323–7. web: https://connectjournals.com/03896.2021.21.3323
Prayitno J, Darmawan RA, Susanto JP, Nugroho R. Tinjauan teknologi inaktivasi virus untuk penanggulangan pandemi COVID-19. J Bioteknol Biosains Indones. 2021; 8(1): 137–54. doi: https://doi.org/10.29122/jbbi.v8i1.4612
Saxena SK. Coronavirus disease 2019 (COVID-19): Epidemiology, pathogenesis, diagnosis, and therapeutics. Singapore: Springer Singapore; 2020. p. 23–5. doi: https://doi.org/10.1007/978-981-15-4814-7
Ren YF, Rasubala L, Malmstrom H, Eliav E. Dental care and oral health under the clouds of COVID-19. JDR Clin Transl Res. 2020; 5(3): 202–10. doi: https://doi.org/10.1177/2380084420924385
Xu H, Zhong L, Deng J, Peng J, Dan H, Zeng X, Li T, Chen Q. High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa. Int J Oral Sci. 2020; 12: 8. doi: https://doi.org/10.1038/s41368-020-0074-x
Hassandarvish P, Tiong V, Mohamed NA, Arumugam H, Ananthanarayanan A, Qasuri M, Hadjiat Y, Abubakar S. In vitro virucidal activity of povidone iodine gargle and mouthwash against SARS-CoV-2: implications for dental practice. Br Dent J. 2020; : 1–4. doi: https://doi.org/10.1038/s41415-020-2402-0
Anderson DE, Sivalingam V, Kang AEZ, Ananthanarayanan A, Arumugam H, Jenkins TM, Hadjiat Y, Eggers M. Povidone-iodine demonstrates rapid in vitro virucidal activity against SARS-CoV-2, the virus causing COVID-19 disease. Infect Dis Ther. 2020; 9(3): 669–75. doi: https://doi.org/10.1007/s40121-020-00316-3
Naqvi SHS, Citardi MJ, Cattano D, Ostrosky-Zeichner L, Knackstedt MI, Karni RJ. Povidone-iodine solution as SARS-CoV-2 prophylaxis for procedures of the upper aerodigestive tract a theoretical framework. J Otolaryngol - Head Neck Surg. 2020; 49(1): 1–4. doi: https://doi.org/10.1186/s40463-020-00474-x
Fuse Y, Ito Y, Yamaguchi M, Tsukada N. High ingestion rate of iodine from povidone-iodine mouthwash. Biol Trace Elem Res. 2022; 200(8): 3902–9. doi: https://doi.org/10.1007/s12011-021-02978-7
Xu C, Wang A, Hoskin ER, Cugini C, Fine DH, Markowitz K, Chang TL. Differential effects of antiseptic mouth rinses on sars-cov-2 infectivity in vitro. Pathogens. 2021; 10(3): 1–14. doi: https://doi.org/10.3390/pathogens10030272
Anani K, Adjrah Y, Améyapoh Y, Karou SD, Agbonon A, de Souza C, Gbeassor M. Antimicrobial, anti-inflammatory and antioxidant activities of Jatropha multifida L. (Euphorbiaceae). Pharmacognosy Res. 2016; 8(2): 142–6. doi: https://doi.org/10.4103/0974-8490.172657
de Carvalho C, Vieira Mariano L, S Negrí£o V, Passarelli Gonçalves C, Cristina Ribeiro Marcucci M. Phenols, flavonoids and antioxidant activity of Jatropha multifida L. collected in Pindamonhangaba, Sao Paulo State, Brazil. J Anal Pharm Res. 2018; 7(5): 581–4. doi: https://doi.org/10.15406/japlr.2018.07.00286
Rampadarath S, Puchooa D, Ranghoo-Sanmukhiya VM. Antimicrobial, phytochemical and larvicidal properties of Jatropha multifida Linn. Asian Pac J Trop Med. 2014; 7: S380–3. doi: https://doi.org/10.1016/S1995-7645(14)60262-5
Thomas S. Pharmacognostic and phytochemical constituents of leaves of Jatropha multifida Linn. and Jatropha podagrica Hook. J Pharmacogn Phytochem. 2016; 5(2): 243–6. web: https://www.phytojournal.com/archives/2016.v5.i2.835/pharmacognostic-and-phytochemical-constituents-of-leaves-of-jatropha-multifida-linn-and-jatropha-podagrica-hook
Syam AK, Insanu M, Wirasutisna KR. Isolation of 8-hidroxy-6,7-dimethoxy coumarin from jarak tintir stem (Jatropha multifida L.) and its toxicity value using brine shrimp lethality test (BSLT). Maj Obat Tradis. 2017; 22(1): 21–4. doi: https://doi.org/10.22146/tradmedj.24303
Chairani A, Harfiani E. Efektivitas getah jarak sebagai antiseptik terhadap pertumbuhan Staphylococcus aureus, Escherichia coli dan Candida sp. secara in vitro. JK UNIILA. 2018; 2(2): 84–8. web: https://juke.kedokteran.unila.ac.id/index.php/JK/article/view/1942
Shoji M, Woo S-Y, Masuda A, Win NN, Ngwe H, Takahashi E, Kido H, Morita H, Ito T, Kuzuhara T. Anti-influenza virus activity of extracts from the stems of Jatropha multifida Linn. collected in Myanmar. BMC Complement Altern Med. 2017; 17(1): 96. doi: https://doi.org/10.1186/s12906-017-1612-8
Nugraha AP, Rahmadhani D, Puspitaningrum MS, Rizqianti Y, Kharisma VD, Ernawati DS. Molecular docking of anthocyanins and ternatin in Clitoria ternatea as coronavirus disease oral manifestation therapy. J Adv Pharm Technol Res. 2021; 12(4): 362–7. doi: https://doi.org/10.4103/japtr.japtr_126_21
Zhang L, Lin D, Sun X, Curth U, Drosten C, Sauerhering L, Becker S, Rox K, Hilgenfeld R. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science. 2020; 368(6489): 409–12. doi: https://doi.org/10.1126/science.abb3405
Jin Z, Du X, Xu Y, Deng Y, Liu M, Zhao Y, Zhang B, Li X, Zhang L, Peng C, Duan Y, Yu J, Wang L, Yang K, Liu F, Jiang R, Yang X, You T, Liu X, Yang X, Bai F, Liu H, Liu X, Guddat LW, Xu W, Xiao G, Qin C, Shi Z, Jiang H, Rao Z, Yang H. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature. 2020; 582(7811): 289–93. doi: https://doi.org/10.1038/s41586-020-2223-y
Aziz FK, Nukitasari C, Oktavianingrum FA, Aryati LW, Santoso B. Hasil in silico senyawa Z12501572, Z00321025, SCB5631028 dan SCB13970547 dibandingkan turunan Zerumbon terhadap human liver glycogen phosphorylase (1l5Q) sebagai antidiabetes. J Kim Val. 2016; 2(2): 120–4. doi: https://doi.org/10.15408/jkv.v2i2.4170
Rantam FA, Prakoeswa CRS, Tinduh D, Nugraha J, Susilowati H, Wijaya AY, Puspaningsih NNT, Puspitasari D, Husada D, Kurniati ND, Aryati A. Characterization of SARS-CoV-2 East Java isolate, Indonesia. F1000Research. 2021; 10: 480. doi: https://doi.org/10.12688/f1000research.53137.1
Rantam FA, Kharisma VD, Sumartono C, Nugraha J, Wijaya AY, Susilowati H, Kuncorojakti S, Nugraha AP. Molecular docking and dynamic simulation of conserved B cell epitope of SARS-CoV-2 glycoprotein Indonesian isolates: an immunoinformatic approach. F1000Research. 2021; 10: 813. doi: https://doi.org/10.12688/f1000research.54258.1
Kharisma VD, Ansori ANM, Dian FA, Rizky WC, Dings TGA, Zainul R, Nugraha AP. Molecular docking and dynamic simulation of entry inhibitor from Tamarindus Indica bioactive compounds against Sars-Cov-2 infection via viroinformatics study. Biochem Cell Arch. 2021; 21(2): 3323–7. web: https://connectjournals.com/03896.2021.21.3323
Nugraha AP, Rahmadhani D, Puspitaningrum MS, Rizqianti Y, Kharisma VD, Ernawati DS. Molecular docking of anthocyanins and ternatin in Clitoria ternatea as coronavirus disease oral manifestation therapy. J Adv Pharm Technol Res. 2021; 12(4): 362–7. doi: https://doi.org/10.4103/japtr.japtr_126_21
Mawaddani N, Sutiyanti E, Widyananda MH, Kharisma VD, Turista DDR, Tamam MB, Jakhmola V, Syamsurizal S S, Fajri BR, Ghifari MR, Albari MT, Ghifari MA, Lubis AP, Novaliendry D, Putri DH, Fitri F, Sari DP, Nugraha AP, Ansori A, Rebezov M, Zainul R. In silico study of entry inhibitor from Moringa oleifera bioactive compounds against SARS-CoV-2 infection. Pharmacogn J. 2022; 14(5): 565–74. doi: https://doi.org/10.5530/pj.2022.14.137
Farhat A, Ben Hlima H, Khemakhem B, Ben Halima Y, Michaud P, Abdelkafi S, Fendri I. Apigenin analogues as SARS-CoV-2 main protease inhibitors: In-silico screening approach. Bioengineered. 2022; 13(2): 3350–61. doi: https://doi.org/10.1080/21655979.2022.2027181
Vilhelmova-Ilieva N, S. Galabov A, Mileva M. Tannins as antiviral agents. In: Tannins - Structural properties, biological properties and current knowledge. IntechOpen; 2020. p. 1–13. doi: https://doi.org/10.5772/intechopen.86490
Vieira DS, de Oliveira FT, Suarez JAG, da Silva DP, Bernardo THL, Bastos ML de A. Biological activities: anti-infectious, antioxidant and healing of the vegetable species Jatropha multifida. Rev Bras Enferm. 2021; 74(2). doi: https://doi.org/10.1590/0034-7167-2020-0451
Zengin G, Mahomoodally MF, Sinan KI, Ak G, Etienne OK, Sharmeen JB, Brunetti L, Leone S, Di Simone SC, Recinella L, Chiavaroli A, Menghini L, Orlando G, JekÅ‘ J, Cziáky Z, Ferrante C. Chemical Composition and Biological Properties of Two Jatropha Species: Different Parts and Different Extraction Methods. Antioxidants. 2021; 10(5): 792. doi: https://doi.org/10.3390/antiox10050792
Copyright (c) 2024 Dental Journal
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
- Every manuscript submitted to must observe the policy and terms set by the Dental Journal (Majalah Kedokteran Gigi).
- Publication rights to manuscript content published by the Dental Journal (Majalah Kedokteran Gigi) is owned by the journal with the consent and approval of the author(s) concerned.
- Full texts of electronically published manuscripts can be accessed free of charge and used according to the license shown below.
- The Dental Journal (Majalah Kedokteran Gigi) is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License