The influence of peripheral-bone-removal protocol on bone augmentation in dental implant surgery: 5-year clinical retrospective study
Downloads
Background: Bone augmentation aims to provide sufficient bone volume around dental implants. Available bone augmentation methods include autogenous bone grafts, xenografts, and alloplastic materials. All have their advantages and disadvantages. However, autogenous bone graft remains the gold standard for bone augmentation. Autogenous bone grafts are usually taken from the patient’s oral donor sites such as the chin and mandibular ramus. However, there is a newly developed implant preparation protocol, known as the peripheral-bone-removal (PBR) technique, which can provide bone augmentation from the dental implant site. Purpose: This study aims to determine the need for bone substitute materials in the PBR technique in dental implant surgery. Methods: This study included 130 patients who were treated for dental implants. These patients were treated between 7.1.2018 and 3.2.2023. Six dental implant systems were used. Five of these systems (ImplantKa®, DeTech®, NeoBiotech®, Easy Implant®, and Dentaurum® Implant) used a conventional method (sequential drilling technique). The sixth (IBS®) system used the PBR protocol. Both descriptive and Chi-Square Test statistics were used for data analysis. Results: The included patients were treated with a total of 198 dental implants. Seventy patients were treated with the PBR protocol, while 60 patients were treated with the sequential drilling protocol. For the PBR protocol, only 2 cases required bone substitute material, whereas 11 cases treated with the sequential drilling protocol required augmentation materials. This difference between both drilling protocols has been statistically confirmed (P=0.008). Conclusion: The PBR technique appears to be less traumatic and more cost-effective for cases that require horizontal bone augmentation.
Downloads
Resnik RR, Misch CE. Rationale for dental implants. In: Resnik RR, editor. Misch's contemporary implant dentistry. 4th ed. Elsevier; 2021. p. 2. web: https://evolve.elsevier.com/cs/product/9780323391559?role=student
Caiazzo A, Brugnami F. Surgical implantology. In: Mehra P, D'Innocenzo R, editors. Manual of minor oral surgery for the general dentist. 2nd ed. Wiley-Blackwell; 2016. p. 113. web: https://www.wiley.com/en-us/Manual+of+Minor+Oral+Surgery+for+the+General+Dentist%2C+2nd+Edition-p-9781118432150
Jarikian S, Jaafo MH, Al-Nerabieah Z. Clinical evaluation of two techniques for narrow alveolar ridge expansion: Clinical study. Int J Dent Oral Sci. 2021; 8(1): 1337–42. doi: https://doi.org/10.19070/2377-8075-21000264
Di Carlo S, Ciolfi A, Grasso E, Pranno N, De Angelis F, Di Gioia C, JedliÅ„ski M, Tornese A, Lomelo P, Brauner E. A retrospective analysis of treatment outcomes following guided bone regeneration at sites exhibiting severe alveolar ridge atrophy. J Craniofac Surg. 2021; 32(6): e572–8. doi: https://doi.org/10.1097/SCS.0000000000007735
Rues S, Schmitter M, Kappel S, Sonntag R, Kretzer JP, Nadorf J. Effect of bone quality and quantity on the primary stability of dental implants in a simulated bicortical placement. Clin Oral Investig. 2021; 25(3): 1265–72. doi: https://doi.org/10.1007/s00784-020-03432-z
Attanasio F, Antonelli A, Brancaccio Y, Averta F, Figliuzzi MM, Fortunato L, Giudice A. Primary stability of three different osteotomy techniques in medullary bone: An in vitro study. Dent J. 2020; 8(1): 21. doi: https://doi.org/10.3390/dj8010021
Caldwell CS, Misch CE. Intraoral autogenous bone grafting. In: Resnik RR, editor. Misch's contemporary implant dentistry. 4th ed. Elsevier; 2021. p. 1054. web: https://evolve.elsevier.com/cs/product/9780323391559?role=student
Powers R. Bone substitutes and membranes. In: Resnik RR, editor. Misch's contemporary implant dentistry. 4th ed. Elseiver; 2021. p. 913. web: https://evolve.elsevier.com/cs/product/9780323391559?role=student
Massa LO, von Fraunhofer JA. Bone grafting. In: The ADA practical guide to dental implants. Wiley; 2021. p. 65–76. doi: https://doi.org/10.1002/9781119630678.ch9
Fillingham Y, Jacobs J. Bone grafts and their substitutes. Bone Joint J. 2016; 98-B(1 Suppl A): 6–9. doi: https://doi.org/10.1302/0301-620X.98B.36350
Pereira RS, Pavelski MD, Griza GL, Boos FBJD, Hochuli-Vieira E. Prospective evaluation of morbidity in patients who underwent autogenous bone-graft harvesting from the mandibular symphysis and retromolar regions. Clin Implant Dent Relat Res. 2019; 21(4): 753–7. doi: https://doi.org/10.1111/cid.12789
InnoBioSurg. The IBS Magic FC Implant. 2020. Available from: https://ibsimplant.ca/our-products/magic-fc-implant/.
Resnik RR. Implant placement surgical protocol. In: Resnik RR, editor. Misch's contemporary implant dentistry. 4th ed. Elseiver; 2021. p. 644. web: https://evolve.elsevier.com/cs/product/9780323391559?role=student
Rodríguez Sánchez F, Rodríguez Andrés C, Arteagoitia I. Which antibiotic regimen prevents implant failure or infection after dental implant surgery? A systematic review and meta-analysis. J Craniomaxillofac Surg. 2018; 46(4): 722–36. doi: https://doi.org/10.1016/j.jcms.2018.02.004
Poppolo Deus F, Ouanounou A. Chlorhexidine in dentistry: Pharmacology, uses, and adverse effects. Int Dent J. 2022; 72(3): 269–77. doi: https://doi.org/10.1016/j.identj.2022.01.005
Cai H, Liang X, Sun D-Y, Chen J-Y. Long-term clinical performance of flapless implant surgery compared to the conventional approach with flap elevation: A systematic review and meta-analysis. World J Clin cases. 2020; 8(6): 1087–103. doi: https://doi.org/10.12998/wjcc.v8.i6.1087
Divakar TK, Gidean Arularasan S, Baskaran M, Packiaraj I, Dhineksh Kumar N. Clinical evaluation of placement of implant by flapless technique over conventional flap technique. J Maxillofac Oral Surg. 2020; 19(1): 74–84. doi: https://doi.org/10.1007/s12663-019-01218-9
Kim H-S, Kim Y-K, Yun P-Y. Minimal invasive horizontal ridge augmentation using subperiosteal tunneling technique. Maxillofac Plast Reconstr Surg. 2016; 38(1): 41. doi: https://doi.org/10.1186/s40902-016-0087-8
D'Albis G, D'Albis V, Cesário de Oliveira Júnior J, D'Orazio F. Tunnel access for ridge augmentation: A review. J Dent Implant Res. 2021; 40(2): 48–53. doi: https://doi.org/10.54527/jdir.2021.40.2.48
Nilawati N, Widyastuti W, Rizka Y, Kurniawan H. Dental implant osseointegration inhibition by nicotine through increasing nAChR, NFATc1 expression, osteoclast numbers, and decreasing osteoblast numbers. Eur J Dent. 2023; 17(4): 1189–93. doi: https://doi.org/10.1055/s-0042-1758794
Wang Y, Cao X, Shen Y, Zhong Q, Wu Z, Wu Y, Weng W, Xu C. Evaluate the effects of low-intensity pulsed ultrasound on dental implant osseointegration under type II diabetes. Front Bioeng Biotechnol. 2024; 12(4): 254–62. doi: https://doi.org/10.3389/fbioe.2024.1356412
Elias CN, Meirelles L. Improving osseointegration of dental implants. Expert Rev Med Devices. 2010; 7(2): 241–56. doi: https://doi.org/10.1586/erd.09.74
Alhamdani FY, Abdulla EH. The influence of local factors on early dental implant failure. J Odontol Res. 2021; 9(1): 5–10. web: http://www.jorigids.org/ejournal-details.php?id=35
French D, Larjava H, Ofec R. Retrospective cohort study of 4591 Straumann implants in private practice setting, with up to 10-year follow-up. Part 1: multivariate survival analysis. Clin Oral Implants Res. 2015; 26(11): 1345–54. doi: https://doi.org/10.1111/clr.12463
Moraschini V, Poubel LA da C, Ferreira VF, Barboza E dos SP. Evaluation of survival and success rates of dental implants reported in longitudinal studies with a follow-up period of at least 10 years: A systematic review. Int J Oral Maxillofac Surg. 2015; 44(3): 377–88. doi: https://doi.org/10.1016/j.ijom.2014.10.023
Albrektsson T, Brånemark PI, Hansson HA, Lindström J. Osseointegrated titanium implants. Requirements for ensuring a long-lasting, direct bone-to-implant anchorage in man. Acta Orthop Scand. 1981; 52(2): 155–70. doi: https://doi.org/10.3109/17453678108991776
Sari N, Kurdi A, Tumali BAS, Ari MDA. Oral rehabilitation using immediate implant placement in mandibular lateral incisors – a case report. Dent J. 2021; 54(3): 160–4. doi: https://doi.org/10.20473/j.djmkg.v54.i3.p160-164
Alghamdi HS, Jansen JA. The development and future of dental implants. Dent Mater J. 2020; 39(2): 167–72. doi: https://doi.org/10.4012/dmj.2019-140
Frösch L, Mukaddam K, Filippi A, Zitzmann NU, Kühl S. Comparison of heat generation between guided and conventional implant surgery for single and sequential drilling protocols-An in vitro study. Clin Oral Implants Res. 2019; 30(2): 121–30. doi: https://doi.org/10.1111/clr.13398
Chen L, Chen N, Chen A, Chen A, Chen N, Chen N, Cha J. A one-drill system for predictable osteotomy and immediate implant placement. EC Dent Sci. 2023; 22(1): 114–28. web: https://ecronicon.net/ecde/a-one-drill-system-for-predictable-osteotomy-and-immediate-implant-placement
Gehrke SA, Guirado JLC, Bettach R, Fabbro M Del, Martínez CP-A, Shibli JA. Evaluation of the insertion torque, implant stability quotient and drilled hole quality for different drill design: an in vitro Investigation. Clin Oral Implants Res. 2018; 29(6): 656–62. doi: https://doi.org/10.1111/clr.12808
Gehrke SA, Bettach R, Aramburú Júnior JS, Prados-Frutos JC, Del Fabbro M, Shibli JA. Peri-implant bone behavior after single drill versus multiple sequence for osteotomy drill. Biomed Res Int. 2018; 2018: 9756043. doi: https://doi.org/10.1155/2018/9756043
Anesi A, Di Bartolomeo M, Pellacani A, Ferretti M, Cavani F, Salvatori R, Nocini R, Palumbo C, Chiarini L. Bone healing evaluation following different osteotomic techniques in animal models: A suitable method for clinical insights. Appl Sci. 2020; 10(20): 1–29. doi: https://doi.org/10.3390/app10207165
Wolfram U, Schwiedrzik J. Post-yield and failure properties of cortical bone. Bonekey Rep. 2016; 5: 829. doi: https://doi.org/10.1038/bonekey.2016.60
Park NI, Kerr M. Terminology in implant dentistry. In: Resnik RR, editor. Misch's contemporary implant dentistry. 4th ed. Elseiver; 2021. p. 20. web: https://evolve.elsevier.com/cs/product/9780323391559?role=student
Pape HC, Evans A, Kobbe P. Autologous bone graft: properties and techniques. J Orthop Trauma. 2010; 24 Suppl 1: S36-40. doi: https://doi.org/10.1097/BOT.0b013e3181cec4a1
Amini AR, Laurencin CT, Nukavarapu SP. Bone tissue engineering: recent advances and challenges. Crit Rev Biomed Eng. 2012; 40(5): 363–408. doi: https://doi.org/10.1615/critrevbiomedeng.v40.i5.10
Chatelet M, Afota F, Savoldelli C. Review of bone graft and implant survival rate"¯: A comparison between autogenous bone block versus guided bone regeneration. J Stomatol oral Maxillofac Surg. 2022; 123(2): 222–7. doi: https://doi.org/10.1016/j.jormas.2021.04.009
Haugen HJ, Lyngstadaas SP, Rossi F, Perale G. Bone grafts: which is the ideal biomaterial? J Clin Periodontol. 2019; 46 Suppl 2: 92–102. doi: https://doi.org/10.1111/jcpe.13058
Hughes P. Hard-tissue augmentation for dental implants. In: Mehra P, D'Innocenzo R, editors. Manual of minor oral surgery for the general dentist. 2nd ed. Wiley-Blackwell; 2016. p. 127. web: https://www.wiley.com/en-us/Manual+of+Minor+Oral+Surgery+for+the+General+Dentist%2C+2nd+Edition-p-9781118432150
Mitchell D. An introduction to oral and maxillofacial surgery. 2nd ed. CRC Press; 2014. p. 209. doi: https://doi.org/10.1201/b17980
Danudiningrat CP. Mandible vertical height correction using lingual bone-split pedicle onlay graft technique. Dent J. 2006; 39(3): 93–7. doi: https://doi.org/10.20473/j.djmkg.v39.i3.p93-97
Copyright (c) 2024 Dental Journal
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
- Every manuscript submitted to must observe the policy and terms set by the Dental Journal (Majalah Kedokteran Gigi).
- Publication rights to manuscript content published by the Dental Journal (Majalah Kedokteran Gigi) is owned by the journal with the consent and approval of the author(s) concerned.
- Full texts of electronically published manuscripts can be accessed free of charge and used according to the license shown below.
- The Dental Journal (Majalah Kedokteran Gigi) is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License