The effect of adding ZrO2 nanoparticles on the transverse strength and hardness of microwave-cured acrylic and heat-cured acrylic denture base materials
Background: One drawback of acrylic denture base materials is their liability to fracture, requiring methods to increase fracture resistance. Adding nanoparticles (NPs) represented one of these methods. Purpose: The objectives of this study are to evaluate and compare transverse strength and hardness when adding zirconium oxide nanoparticles (ZrO2 NPs) at concentrations of 0%, 3%, and 5% to heat-cured acrylic denture base materials (Ivoclare, Major) and to microwave-cured acrylic (Acron MC). Methods: Transverse strength was tested with a Universal Testing Machine (GESTER, Fujian, China), while hardness tests were conducted by using a Shore-D hardness durometer (Show, China). The 90 samples were prepared and then divided into three groups for each material. Attenuated total reflectance–Fourier transform infrared (ATR-FTIR) spectroscopy was used to analyze the microstructure. The samples were prepared following the manufacturer’s instructions for each material. Results: The results revealed that the addition of ZrO2 NPs (3%, 5%) improves the transverse strength and hardness of polymethyl methacrylate acrylic resin for both types (microwave-cured and heat-cured acrylic resins). The addition of ZrO2 NPs at 3% concentration shows the highest values for both transverse strength and hardness. The ATR-FTIR confirms no structural chemical changes with the addition of ZrO2 NPs. Conclusion: The study concludes that the incorporation of ZrO2 NPs (3%, 5%) into microwave-cured and heat-cured acrylic resins improves transverse strength and hardness.
Downloads
Febrina E, Evelyna A, Harmaji A, Sunendar B. Properties of nanocellulose and zirconia alumina on polymethylmethacrylate dental composite. Dent J. 2023; 56(1): 30–5. doi: https://doi.org/10.20473/j.djmkg.v56.i1.p30-35
Salih SI, Oleiwi JK, Hamad QA. Investigation of fatigue and compression strength for the PMMA reinforced by different system for denture applications. Int J Biomed Mater Res. 2015; 3(1): 5–13. doi: https://doi.org/10.11648/j.ijbmr.20150301.13
Ilyas M, Ullah S, Khan S, Ahmad A, Rahman F, Khan SU. Zirconium nanoparticles it's biological synthesis and biomedical application: a review. Plant. 2022; 10(2): 59–68. doi: https://doi.org/10.11648/j.plant.20221002.15
Zhang X-Y, Zhang X-J, Huang Z-L, Zhu B-S, Chen R-R. Hybrid effects of zirconia nanoparticles with aluminum borate whiskers on mechanical properties of denture base resin PMMA. Dent Mater J. 2014; 33(1): 141–6. doi: https://doi.org/10.4012/dmj.2013-054
Hussein IE, Hasan RH. Effects of nano zirconium oxide addition on the strength, hardness, and microstructure of maxillofacial silicone material. Int Med J. 2021; 28(1): 54–7. web: https://www.researchgate.net/publication/353274491
Septyarini BE, Dwiandhono I, Imam DNA. The different effects of preheating and heat treatment on the surface microhardness of nanohybrid resin composite. Dent J. 2020; 53(1): 6–9. doi: https://doi.org/10.20473/j.djmkg.v53.i1.p6-9
Ajay R, Suma K, Ali S. Monomer modifications of denture base acrylic resin: A systematic review and meta-analysis. J Pharm Bioallied Sci. 2019; 11(6): 112. doi: https://doi.org/10.4103/JPBS.JPBS_34_19
Gad M, Rahoma A, Al-Thobity AM, ArRejaie A. Influence of incorporation of ZrO2 nanoparticles on the repair strength of polymethyl methacrylate denture bases. Int J Nanomedicine. 2016; 11: 5633–43. doi: https://doi.org/10.2147/IJN.S120054
Lee H-H, Lee C-J, Asaoka K. Correlation in the mechanical properties of acrylic denture base resins. Dent Mater J. 2012; 31(1): 157–64. doi: https://doi.org/10.4012/dmj.2011-205
Gad M, Fouda S, Al-Harbi F, Näpänkangas R, Raustia A. PMMA denture base material enhancement: a review of fiber, filler, and nanofiller addition. Int J Nanomedicine. 2017; 12: 3801–12. doi: https://doi.org/10.2147/IJN.S130722
Gad M, ArRejaie AS, Abdel-Halim MS, Rahoma A. The reinforcement effect of nano-zirconia on the transverse strength of repaired acrylic denture base. Int J Dent. 2016; 2016: 1–6. doi: https://doi.org/10.1155/2016/7094056
Gad MM, Al-Thobity AM, Rahoma A, Abualsaud R, Al-Harbi FA, Akhtar S. Reinforcement of PMMA denture base material with a mixture of ZrO2 nanoparticles and glass fibers. Int J Dent. 2019; 2019: 1–11. doi: https://doi.org/10.1155/2019/2489393
Alshaikh AA, Khattar A, Almindil IA, Alsaif MH, Akhtar S, Khan SQ, Gad MM. 3D-printed nanocomposite denture-base resins: effect of ZrO2 nanoparticles on the mechanical and surface properties in vitro. Nanomaterials. 2022; 12(14): 2451. doi: https://doi.org/10.3390/nano12142451
Ozkir SE, Yilmaz B, Unal SM, Culhaoglu A, Kurkcuoglu I. Effect of heat polymerization conditions and microwave on the flexural strength of polymethyl methacrylate. Eur J Dent. 2018; 12(1): 116–9. doi: https://doi.org/10.4103/ejd.ejd_199_17
Kartika U, Agrawal B, Yadav N, Singh P, Rahangdale T. The effect of microwave processing and use of antimicrobial agent on porosity of conventional heat cured denture base resin: An in vitro study. J Indian Prosthodont Soc. 2015; 15(3): 257. doi: https://doi.org/10.4103/0972-4052.161080
Spartalis GK, Cappelletti LK, Schoeffel AC, Michél MD, Pegoraro TA, Arrais CAG, Neppelenbroek KH, Urban VM. Effect of conventional water-bath and experimental microwave polymerization cycles on the flexural properties of denture base acrylic resins. Dent Mater J. 2015; 34(5): 623–8. doi: https://doi.org/10.4012/dmj.2015-047
Zidan S, Silikas N, Alhotan A, Haider J, Yates J. Investigating the mechanical properties of ZrO2-impregnated PMMA nanocomposite for denture-based applications. Materials (Basel). 2019; 12(8): 1344. doi: https://doi.org/10.3390/ma12081344
British Standards Institution. BS EN ISO 20795-1:2008 Dentistry. Base polymers - Denture base polymers. London, UK; 2008. p. 36. web: https://knowledge.bsigroup.com/products/dentistry-base-polymers-denture-base-polymers-1?version=standard
British Standards Institution. BS 2487:1989 Specification for denture base polymers. London, UK; 1989. p. 10. web: https://knowledge.bsigroup.com/products/specification-for-denture-base-polymers?version=standard
Golden WG, Driscoll CF. Flasking, packing, and processing complete dentures. In: Treating the complete denture patient. Wiley; 2020. p. 139–50. doi: https://doi.org/10.1002/9781119569558.ch24
Durkan R, Oyar P. Comparison of mechanical and dynamic mechanical behaviors of different dental resins polymerized by different polymerization techniques. Niger J Clin Pract. 2018; 21(9): 1144. doi: https://doi.org/10.4103/njcp.njcp_423_17
Aboshama M, Sayed A, Elhagali A. Effect of different nano-fillers addition on the mechanical properties of heat-polymerized acrylic resin. Al-Azhar Assiut Dent J. 2022; 5(2): 141–8. doi: https://doi.org/10.21608/aadj.2022.267266
Fonseca RB, Kasuya AVB, Favarí£o IN, Naves LZ, Hoeppner MG. The influence of polymerization type and reinforcement method on flexural strength of acrylic resin. Sci World J. 2015; 2015: 1–8. doi: https://doi.org/10.1155/2015/919142
Nandiyanto ABD, Oktiani R, Ragadhita R. How to read and interpret FTIR spectroscope of organic material. Indones J Sci Technol. 2019; 4(1): 97–118. doi: https://doi.org/10.17509/ijost.v4i1.15806
Fatalla AA, Tukmachi MS, Jani GH. Assessment of some mechanical properties of PMMA/silica/zirconia nanocomposite as a denture base material. IOP Conf Ser Mater Sci Eng. 2020; 987(1): 012031. doi: https://doi.org/10.1088/1757-899X/987/1/012031
Al-Flayeh Y, Al-Noori A. Evaluation some of the physical properties of poly methyl methacrylate-zirconium oxide nanocomposite denture base material. Al-Rafidain Dent J. 2023; 23(2): 367–74. doi: https://doi.org/10.33899/rdenj.2023.131408.1135
Vikram S, Chander NG. Effect of zinc oxide nanoparticles on the flexural strength of polymethylmethacrylate denture base resin. Eur Oral Res. 2020; 54(1): 31–5. doi: https://doi.org/10.26650/eor.20200063
Burunkova J, Denisiuk I, Vorzobova N, Daroczi L, Hegedus C, Charnovych S, Kokenyesi S. Fabrication and characterization of gold/acrylic polymer nanocomposites. Eur Polym J. 2013; 49(10): 3072–7. doi: https://doi.org/10.1016/j.eurpolymj.2013.05.024
Asopa V, Suresh S, Khandelwal M, Sharma V, Asopa SS, Kaira LS. A comparative evaluation of properties of zirconia reinforced high impact acrylic resin with that of high impact acrylic resin. Saudi J Dent Res. 2015; 6(2): 146–51. doi: https://doi.org/10.1016/j.sjdr.2015.02.003
Özkan Ata S, Akay C, Mumcu E. The effects of metal nanoparticles incorporation on the mechanical properties of denture base acrylic resin. Eur Oral Res. 2022; 57(1): 36–40. doi: https://doi.org/10.26650/eor.20231079531
Ahmed MA, Ebrahim MI. Effect of zirconium oxide nano-fillers addition on the flexural strength, fracture toughness, and hardness of heat-polymerized acrylic resin. World J Nano Sci Eng. 2014; 4(2): 50–7. doi: https://doi.org/10.4236/wjnse.2014.42008
Gad M, Abualsaud R, Rahoma A, Al-Thobity AM, Alabidi K, Akhtar S. Effect of zirconium oxide nanoparticles addition on the optical and tensile properties of polymethyl methacrylate denture base material. Int J Nanomedicine. 2018; 13: 283–92. doi: https://doi.org/10.2147/IJN.S152571
Hameed HK, Rahman HA. The effect of addition nano particle ZrO2 on some properties of autoclave processed heat cure acrylic denture base material. J Baghdad Coll Dent. 2015; 27(1): 32–9. doi: https://doi.org/10.12816/0015262
Karci M, Demir N, Yazman S. Evaluation of flexural strength of different denture base materials reinforced with different nanoparticles. J Prosthodont. 2019; 28(5): 572–9. doi: https://doi.org/10.1111/jopr.12974
Kumar A, Khandelwal M, Gupta SK, Kumar V, Rani R. Fourier transform infrared spectroscopy: Data interpretation and applications in structure elucidation and analysis of small molecules and nanostructures. In: Data Processing Handbook for Complex Biological Data Sources. Elsevier; 2019. p. 77–96. doi: https://doi.org/10.1016/B978-0-12-816548-5.00006-X
Masood TM, Abbassy MA, Bakry AS, Matar NY, Hassan AH. Fourier-transform infrared spectroscopy/attenuated total reflectance analysis for the degree of conversion and shear bond strength of Transbond XT adhesive system. Clin Cosmet Investig Dent. 2018; 10: 275–80. doi: https://doi.org/10.2147/CCIDE.S169438
Copyright (c) 2024 Dental Journal
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
- Every manuscript submitted to must observe the policy and terms set by the Dental Journal (Majalah Kedokteran Gigi).
- Publication rights to manuscript content published by the Dental Journal (Majalah Kedokteran Gigi) is owned by the journal with the consent and approval of the author(s) concerned.
- Full texts of electronically published manuscripts can be accessed free of charge and used according to the license shown below.
- The Dental Journal (Majalah Kedokteran Gigi) is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License