Impact of chitosan modification on the material properties of acrylic resin base
Downloads
Background: 3D-printed polymethyl methacrylate is a light-cured commercial resin used in the 3D printing sector due to its affordability, good adaptability, minimal odor, and low irritation. Purpose: To investigate the impact of modified chitosan on the surface hardness and flexural strength of printed dental resin. Methods: A modified chitosan solution was cross-linked with adipic acid at concentrations of 0.1, 0.05, and 0.01 wt.% and then added to 3D-printable acrylic resin at 2, 5, and 10 wt.%. After addition, samples were prepared to test surface hardness and flexural strength. A total of 100 specimens were used in the research, grouped into 10 sets. Five specimens were prepared for each additive percentage, and five specimens served as a control group (3D-printable resin without modification) for each test. Results: The results showed that the (adipic acid/chitosan) 0.1/2 wt.% group had the highest flexural strength (134.370 MPa) and surface hardness (32.46 VHN), while the lowest flexural strength (49.198 MPa) and surface hardness (21.22 VHN) were observed in the (adipic acid/chitosan) 0.01/10 wt.% group. Conclusion: Modification of chitosan with adipic acid positively influences the flexural strength and surface hardness of 3D-printed denture bases. However, increasing the chitosan content beyond 2 wt.% reduces both surface hardness and flexural strength in modified 3D-printed polymers.
Downloads
Asim FA, Al-Mosaweb EHA, Hussain WA. Studying the physical and biological characteristics of denture base resin PMMA reinforced with ZrO2 and TiO2 nanoparticles. Karbala Int J Mod Sci. 2022; 8(3): 503–13. doi: https://doi.org/10.33640/2405-609X.3251
Yoon S-N, Oh KC, Lee SJ, Han J-S, Yoon H-I. Tissue surface adaptation of CAD-CAM maxillary and mandibular complete denture bases manufactured by digital light processing: A clinical study. J Prosthet Dent. 2020; 124(6): 682–9. doi: https://doi.org/10.1016/j.prosdent.2019.11.007
Pacquet W, Benoit A, Hatège-Kimana C, Wulfman C. Mechanical properties of CAD/CAM denture base resins. Int J Prosthodont. 2019; 32(1): 104–6. doi: https://doi.org/10.11607/ijp.6025
Dawood A, Marti Marti B, Sauret-Jackson V, Darwood A. 3D printing in dentistry. Br Dent J. 2015; 219(11): 521–9. doi: https://doi.org/10.1038/sj.bdj.2015.914
Arnesano A, Kunjalukkal Padmanabhan S, Notarangelo A, Montagna F, Licciulli A. Fused deposition modeling shaping of glass infiltrated alumina for dental restoration. Ceram Int. 2020; 46(2): 2206–12. doi: https://doi.org/10.1016/j.ceramint.2019.09.205
Layani M, Wang X, Magdassi S. Novel materials for 3D printing by photopolymerization. Adv Mater. 2018; 30(41): e1706344. doi: https://doi.org/10.1002/adma.201706344
Belsure N, Parekh S, Soni N. An overview of 3D printable materials for dental and craniofacial applications. In: 3D printing in oral health science. Cham: Springer International Publishing; 2022. p. 69–91. doi: https://doi.org/10.1007/978-3-031-07369-4_4
Andriani I, Medawati A, Humanindito MI, Nurhasanah M. The effect of antimicrobial peptide gel RISE-AP12 on decreasing neutrophil and enhancing macrophage in nicotine-periodontitis Wistar rat model. Dent J. 2022; 55(2): 93–8. doi: https://doi.org/10.20473/j.djmkg.v55.i2.p93-98
Kulikov SN, Lisovskaya SA, Zelenikhin P V, Bezrodnykh EA, Shakirova DR, Blagodatskikh I V, Tikhonov VE. Antifungal activity of oligochitosans (short chain chitosans) against some Candida species and clinical isolates of Candida albicans: Molecular weight–activity relationship. Eur J Med Chem. 2014; 74: 169–78. doi: https://doi.org/10.1016/j.ejmech.2013.12.017
Wahjuningrum DA, Pramesti HD, Sihombing MR, Devi ZL, Roelianto M, Setyabudi. Chitosan antibacterial activity against Streptococcus viridans. Malaysian J Med Heal Sci. 2021; 17(Supp.13): 54–9. web: https://scholar.unair.ac.id/en/publications/chitosan-antibacterial-activity-against-streptococcus-viridans
Aljumaily E, Al-Khatib A. Hardness and elastic modulus assessment for two aligner materials before and after thermocycling: a comparative study. Georgian Med News. 2023; June(339): 77–82. pubmed: http://www.ncbi.nlm.nih.gov/pubmed/37522779
Kamadjaja MJK. Bone remodeling using a three-dimensional chitosan - hydroxyapatite scaffold seeded with hypoxic conditioned human amnion mesenchymal stem cells. Dent J. 2021; 54(2): 68–73. doi: https://doi.org/10.20473/J.DJMKG.V54.I2.P68-73
Devi I, Sufarnap E, Finna, Pane ERP. Chitosan’s effects on the acidity, copper ion release, deflection, and surface roughness of copper-nickel-titanium archwire. Dent J. 2023; 56(1): 41–7. doi: https://doi.org/10.20473/j.djmkg.v56.i1.p41-47
Herpel C, Tasaka A, Higuchi S, Finke D, Kühle R, Odaka K, Rues S, Lux CJ, Yamashita S, Rammelsberg P, Schwindling FS. Accuracy of 3D printing compared with milling — A multi-center analysis of try-in dentures. J Dent. 2021; 110: 103681. doi: https://doi.org/10.1016/j.jdent.2021.103681
Zeidan AAE, Sherif AF, Baraka Y, Abualsaud R, Abdelrahim RA, Gad MM, Helal MA. Evaluation of the effect of different construction techniques of CAD‐CAM milled, 3D‐printed, and polyamide denture base resins on flexural strength: An in vitro comparative study. J Prosthodont. 2023; 32(1): 77–82. doi: https://doi.org/10.1111/jopr.13514
Putri TS, Elsheikh M. Flexural strength evaluation of chitosan-gelatin-Β-tricalcium phosphate-based composite scaffold. J Int Dent Med Res. 2022; 15(1): 31–4. web: http://www.jidmr.com/journal/wp-content/uploads/2022/03/6-D21_1649_Tansza_Setiana_Putri_Indonesia.pdf
ISO 6872:2008. Dentistry — Ceramic materials. 3rd ed. Switzerland: International Organization for Standardization; 2008. p. 7. web: https://www.iso.org/standard/41385.html
Song S-Y, Kim K-S, Lee J-Y, Shin S-W. Physical properties and color stability of injection-molded thermoplastic denture base resins. J Adv Prosthodont. 2019; 11(1): 32. doi: https://doi.org/10.4047/jap.2019.11.1.32
Salman AD, Jani GH, A. Fatalla A. Comparative study of the effect of incorporating SiO2 nano-particles on properties of poly methyl methacrylate denture bases. Biomed Pharmacol J. 2017; 10(3): 1525–35. doi: https://doi.org/10.13005/bpj/1262
Alsandi Q, Ikeda M, Arisaka Y, Nikaido T, Tsuchida Y, Sadr A, Yui N, Tagami J. Evaluation of mechanical and physical properties of light and heat polymerized UDMA for DLP 3D printer. Sensors. 2021; 21(10): 3331. doi: https://doi.org/10.3390/s21103331
Revilla‐León M, Özcan M. Additive manufacturing technologies used for processing polymers: current status and potential application in prosthetic dentistry. J Prosthodont. 2019; 28(2): 146–58. doi: https://doi.org/10.1111/jopr.12801
Prpić V, Schauperl Z, Ćatić A, Dulčić N, Čimić S. Comparison of mechanical properties of 3D‐printed, CAD/CAM, and conventional denture base materials. J Prosthodont. 2020; 29(6): 524–8. doi: https://doi.org/10.1111/jopr.13175
Gad MM, Fouda SM, Abualsaud R, Alshahrani FA, Al‐Thobity AM, Khan SQ, Akhtar S, Ateeq IS, Helal MA, Al‐Harbi FA. Strength and surface properties of a 3D‐printed denture base polymer. J Prosthodont. 2022; 31(5): 412–8. doi: https://doi.org/10.1111/jopr.13413
Aati S, Akram Z, Shrestha B, Patel J, Shih B, Shearston K, Ngo H, Fawzy A. Effect of post-curing light exposure time on the physico–mechanical properties and cytotoxicity of 3D-printed denture base material. Dent Mater. 2022; 38(1): 57–67. doi: https://doi.org/10.1016/j.dental.2021.10.011
Alifui-Segbaya F, Bowman J, White AR, George R, Fidan I. Characterization of the double bond conversion of acrylic resins for 3D printing of dental prostheses. Compend Contin Educ Dent. 2019; 40(10): e7–11. pubmed: http://www.ncbi.nlm.nih.gov/pubmed/31730361
Al-Nuaimi N, Gasgoos S. Effect of chicken eggshell paste on enamel surface microhardness and colour change of artificial carious lesions created on permanently extracted teeth. Georgian Med News. 2023; (340–341): 107–12. pubmed: http://www.ncbi.nlm.nih.gov/pubmed/37805883
ISO 20795-1:2013. Dentistry — Base polymers Part 1: Denture base polymers. 2nd ed. Switzerland: International Organization for Standardization; 2013. web: https://www.iso.org/standard/62277.html
Rijal MAS, Masitah H, Purvitasari F, Sari R. The effect of chitosan type and drug-chitosan ratio on physical characteristics and release profile of ketoprofen microparticles prepared by spray drying. J Basic Clin Physiol Pharmacol. 2021; 32(4): 669–73. doi: https://doi.org/10.1515/jbcpp-2020-0487
Al-Takai IF, AL-Nema L, Jabrail FH. Effects of addition of chitosan and dicarboxylic acid on properties of 3D printable acrylic resin denture base. Chem Probl. 2024; 22(1): 115–32. doi: https://doi.org/10.32737/2221-8688-2024-1-115-132
Wang Y, Wu C. Site-specific conjugation of polymers to proteins. Biomacromolecules. 2018; 19(6): 1804–25. doi: https://doi.org/10.1021/acs.biomac.8b00248
Suryanto H, Yanuhar U, Ahmad Atif Fikri, Mahasri G. Chlorella vulgaris-mediated nanosilver synthesis with chitosan capping agent. Evergreen. 2023; 10(1): 146–54. doi: https://doi.org/10.5109/6781061
Singh A, Tejaswi S, Mruthunjaya K, Shetty S, Ambikathanaya UK A, Manglekar SB. Comparative evaluation of microhardness and color change of root dentin using Punica granatum (pomegranate extract), sodium hypochlorite, chlorhexidine and normal saline as an endodontic irrigant – An in vitro study. Pharmacogn J. 2023; 15(5): 732–7. doi: https://doi.org/10.5530/pj.2023.15.144
Andreotti AM, Goiato MC, Moreno A, Nóbrega AS, Pesqueira AA, dos Santos DM. Influence of nanoparticles on color stability, microhardness, and flexural strength of acrylic resins specific for ocular prosthesis. Int J Nanomedicine. 2014; : 5779. doi: https://doi.org/10.2147/IJN.S71533
Parthasarathy R, Misra A, Park J, Ye Q, Spencer P. Diffusion coefficients of water and leachables in methacrylate-based crosslinked polymers using absorption experiments. J Mater Sci Mater Med. 2012; 23(5): 1157–72. doi: https://doi.org/10.1007/s10856-012-4595-5
Merdas I, Tcharkhtchi A, Thominette F, Verdu J, Dean K, Cook W. Water absorption by uncrosslinked polymers, networks and IPNs having medium to high polarity. Polymer (Guildf). 2002; 43(17): 4619–25. doi: https://doi.org/10.1016/S0032-3861(02)00267-7
Perea-Lowery L, Gibreel M, Vallittu PK, Lassila L V. 3d-printed vs. Heat-polymerizing and autopolymerizing denture base acrylic resins. Materials (Basel). 2021; 14(19): 1–11. doi: https://doi.org/10.3390/ma14195781
Xailani KK, Hamad SA. Effect of photobiomodulation on bone formation around dental implants placed in overprepared sites: micro ct scan study. Bahrain Med Bull. 2023; 45(3): 1695–9. web: https://bahrainmedicalbulletin.com/Sep_2023/BMB-23-491.pdf
Hemmati MA, Vafaee F, Allahbakhshi H. Water sorption and flexural strength of thermoplastic and conventional heat-polymerized acrylic resins. J Dent (Tehran). 2015; 12(7): 478–84. pubmed: http://www.ncbi.nlm.nih.gov/pubmed/26877737
Almulayounis M, Al-Ali A. Effect of heat treatment duration and cooling conditions on tensile properties and hardness of selective-laser-melted cobalt-chromium alloy. Georgian Med News. 2023; (337): 38–42. web: http://www.ncbi.nlm.nih.gov/pubmed/37354671
Jaikumar Ra, Karthigeyan S, Ali S, Naidu Nm, Kumar Rp, Vijayalakshmi K. Comparison of flexural strength in three types of denture base resins: An in vitro study. J Pharm Bioallied Sci. 2015; 7(6): 461. doi: https://doi.org/10.4103/0975-7406.163505
Müller JA, Rohr N, Fischer J. Evaluation of ISO 4049: water sorption and water solubility of resin cements. Eur J Oral Sci. 2017; 125(2): 141–50. doi: https://doi.org/10.1111/eos.12339
Hamanaka I, Iwamoto M, Lassila L, Vallittu P, Shimizu H, Takahashi Y. Influence of water sorption on mechanical properties of injection-molded thermoplastic denture base resins. Acta Odontol Scand. 2014; 72(8): 859–65. doi: https://doi.org/10.3109/00016357.2014.919662
Alhasyimi AA, Indra P, Rosyida NF, Retnaningrum Y, Setijanto RD, Vázquez-Santos FJ. A novel approach for posterior bite collapse in an adult with crossbite anterior using a 3D-printed bite riser. Dent J. 2024; 57(4): 292–7. doi: https://doi.org/10.20473/j.djmkg.v57.i4.p292-297
Copyright (c) 2025 Dental Journal

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
- Every manuscript submitted to must observe the policy and terms set by the Dental Journal (Majalah Kedokteran Gigi).
- Publication rights to manuscript content published by the Dental Journal (Majalah Kedokteran Gigi) is owned by the journal with the consent and approval of the author(s) concerned.
- Full texts of electronically published manuscripts can be accessed free of charge and used according to the license shown below.
- The Dental Journal (Majalah Kedokteran Gigi) is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License