Degradation rate and weight loss analysis for freeze-dried, decellularized, and deproteinized bovine bone scaffolds
Downloads
Background: Mandibular defects, often caused by trauma, tumors, infections, and congenital issues, are commonly treated with bone grafts. Tissue engineering plays a crucial role in bone reconstruction, with scaffolds such as deproteinized bovine bone matrix (DBBM), freeze-dried bovine bone (FDBB), and decellularized FDBB (Dc-FDBB) being studied for their efficacy. Decellularization reduces the antigenic potential of FDBB. These scaffolds are designed to degrade within the body. Purpose: To analyze the weight loss and degradation rates of FDBB and Dc-FDBB materials, using DBBM as a control. Methods: This in vitro experimental study, conducted over 2 months, employed a cross-sectional approach to analyze the weight loss and degradation rates of FDBB, Dc-FDBB, and DBBM scaffolds in a simulated body fluid (SBF) solution. Results: Under dynamic immersion conditions, DBBM exhibited the highest daily weight loss at 0.741% and a degradation rate of 0.466 mg/cm²/day, followed by Dc-FDBB at 0.568% and 0.418 mg/cm²/day and FDBB at 0.525% and 0.385 mg/cm²/day. Under static immersion conditions, DBBM also showed the highest weight loss at 0.255%, with a degradation rate of 0.165 mg/cm²/day, followed by Dc-FDBB at 0.245% and 0.163 mg/cm²/day, and FDBB at 0.168% with a degradation rate of 0.126 mg/cm²/day. Significant differences were observed between scaffold groups (p = 0.000). Conclusion: DBBM, Dc-FDBB, and FDBB scaffolds meet the optimal requirements for tissue engineering materials based on their weight loss and degradation rates. DBBM demonstrated the highest values among the scaffolds analyzed.
Downloads
Kheirallah M, Almeshaly H. Bone graft substitutes for bone defect regeneration . A collective review. Int J Dent Oral Sci. 2016; 3(5): 247–55. doi: https://doi.org/10.19070/2377-8075-1600051
Farzad M, Mohammadi M. Guided bone regeneration: A literature review. J Oral Heal Oral Epidemiol. 2012; 1(1): 3–18. web: https://johoe.kmu.ac.ir/article_84758.html
Batstone M. Reconstruction of major defects of the jaws. Aust Dent J. 2018; 63(S1): S108–13. doi: https://doi.org/10.1111/adj.12596
Fernandez de Grado G, Keller L, Idoux-Gillet Y, Wagner Q, Musset A-M, Benkirane-Jessel N, Bornert F, Offner D. Bone substitutes: a review of their characteristics, clinical use, and perspectives for large bone defects management. J Tissue Eng. 2018; 9: 204173141877681. doi: https://doi.org/10.1177/2041731418776819
Singh J, Takhar RK, Bhatia A, Goel A. Bone graft materials: dental aspects. J Nov Res Healthc Nurs. 2016; 3(1): 99–103. web: https://www.noveltyjournals.com/upload/paper/Bone%20Graft%20Materials-527.pdf
Oryan A, Alidadi S, Moshiri A, Maffulli N. Bone regenerative medicine: classic options, novel strategies, and future directions. J Orthop Surg Res. 2014; 9(1): 18. doi: https://doi.org/10.1186/1749-799X-9-18
Le B, Nurcombe V, Cool S, Van Blitterswijk C, De Boer J, LaPointe V. The components of bone and what they can teach us about regeneration. Materials (Basel). 2017; 11(1): 14. doi: https://doi.org/10.3390/ma11010014
O’Brien FJ. Biomaterials & scaffolds for tissue engineering. Mater Today. 2011; 14(3): 88–95. doi: https://doi.org/10.1016/S1369-7021(11)70058-X
Nooeaid P, Salih V, Beier JP, Boccaccini AR. Osteochondral tissue engineering: scaffolds, stem cells and applications. J Cell Mol Med. 2012; 16(10): 2247–70. doi: https://doi.org/10.1111/j.1582-4934.2012.01571.x
Titsinides S, Agrogiannis G, Karatzas T. Bone grafting materials in dentoalveolar reconstruction: A comprehensive review. Jpn Dent Sci Rev. 2019; 55(1): 26–32. doi: https://doi.org/10.1016/j.jdsr.2018.09.003
Arifin A, Mahyudin F, Edward M. The clinical and radiological outcome of bovine hydroxyapatite (bio hydrox) as bonegraft. J Orthop Traumatol Surabaya. 2020; 9(1): 9–16. doi: https://doi.org/10.20473/joints.v9i1.2020.9-16
Güngörmüş Z, Güngörmüş M. Effect of religious belief on selecting of graft materials used in oral and maxillofacial surgery. J Oral Maxillofac Surg. 2017; 75(11): 2347–53. doi: https://doi.org/10.1016/j.joms.2017.07.160
Kamadjaja DB, Sumarta NPM, Rizqiawan A. Stability of tissue augmented with deproteinized bovine bone mineral particles associated with implant placement in anterior maxilla. Case Rep Dent. 2019; 2019: 1–5. doi: https://doi.org/10.1155/2019/5431752
Chakar C, Naaman N, Soffer E, Cohen N, El Osta N, Petite H, Anagnostou F. Bone formation with deproteinized bovine bone mineral or biphasic calcium phosphate in the presence of autologous platelet lysate: comparative investigation in rabbit. Int J Biomater. 2014; 2014: 367265. doi: https://doi.org/10.1155/2014/367265
Chen G, Lv Y. Decellularized bone matrix scaffold for bone regeneration. In: Methods in molecular biology. New York, NY: Humana Press; 2017. p. 239–54. doi: https://doi.org/10.1007/7651_2017_50
Kartikasari N, Yuliati A, Kriswandini IL. Compressive strength and porosity tests on bovine hydroxyapatite-gelatin-chitosan scaffolds. Dent J. 2016; 49(3): 153–7. doi: https://doi.org/10.20473/j.djmkg.v49.i3.p153-157
Wang C, Huang W, Zhou Y, He L, He Z, Chen Z, He X, Tian S, Liao J, Lu B, Wei Y, Wang M. 3D printing of bone tissue engineering scaffolds. Bioact Mater. 2020; 5(1): 82–91. doi: https://doi.org/10.1016/j.bioactmat.2020.01.004
Herda E, Puspitasari D. Tinjauan peran dan sifat material yang digunakan sebagai scaffold dalam rekayasa jaringan. J Mater Kedokt Gigi. 2016; 1(5): 58–9. web: http://jurnal.pdgi.or.id/index.php/jmkg/article/view/244
Md Saad AP, Jasmawati N, Harun MN, Abdul Kadir MR, Nur H, Hermawan H, Syahrom A. Dynamic degradation of porous magnesium under a simulated environment of human cancellous bone. Corros Sci. 2016; 112: 495–506. doi: https://doi.org/10.1016/J.CORSCI.2016.08.017
Guo Z, Yang C, Zhou Z, Chen S, Li F. Characterization of biodegradable poly(lactic acid) porous scaffolds prepared using selective enzymatic degradation for tissue engineering. RSC Adv. 2017; 7(54): 34063–70. doi: https://doi.org/10.1039/c7ra03574h
Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 2006; 27(15): 2907–15. doi: https://doi.org/10.1016/j.biomaterials.2006.01.017
Edgar L, McNamara K, Wong T, Tamburrini R, Katari R, Orlando G. Heterogeneity of scaffold biomaterials in tissue engineering. Materials (Basel). 2016; 9(5): 332. doi: https://doi.org/10.3390/ma9050332
Yassin MA, Leknes KN, Pedersen TO, Xing Z, Sun Y, Lie SA, Finne‐Wistrand A, Mustafa K. Cell seeding density is a critical determinant for copolymer scaffolds‐induced bone regeneration. J Biomed Mater Res Part A. 2015; 103(11): 3649–58. doi: https://doi.org/10.1002/jbm.a.35505
Zhang H, Zhou L, Zhang W. Control of scaffold degradation in tissue engineering: a review. Tissue Eng Part B Rev. 2014; 20(5): 492–502. doi: https://doi.org/10.1089/ten.TEB.2013.0452
Neut D, van de Belt H, Stokroos I, van Horn JR, van der Mei HC, Busscher HJ. Biomaterial-associated infection of gentamicin-loaded PMMA beads in orthopaedic revision surgery. J Antimicrob Chemother. 2001; 47(6): 885–91. doi: https://doi.org/10.1093/jac/47.6.885
Rodríguez X, Vela X, Méndez V, Segalà M, Calvo-Guirado JL, Tarnow DP. The effect of abutment dis/reconnections on peri-implant bone resorption: a radiologic study of platform-switched and non-platform-switched implants placed in animals. Clin Oral Implants Res. 2013; 24(3): 305–11. doi: https://doi.org/10.1111/j.1600-0501.2011.02317.x
Zhang K, Fan Y, Dunne N, Li X. Effect of microporosity on scaffolds for bone tissue engineering. Regen Biomater. 2018; 5(2): 115–24. doi: https://doi.org/10.1093/rb/rby001
Yadav N, Srivastava P. In vitro studies on gelatin/hydroxyapatite composite modified with osteoblast for bone bioengineering. Heliyon. 2019; 5(5): e01633. doi: https://doi.org/10.1016/j.heliyon.2019.e01633
Degidi M, Daprile G, Nardi D, Piattelli A. Buccal bone plate in immediately placed and restored implant with Bio-Oss(®) collagen graft: a 1-year follow-up study. Clin Oral Implants Res. 2013; 24(11): 1201–5. doi: https://doi.org/10.1111/j.1600-0501.2012.02561.x
Jain G, Blaauw D, Chang S. A comparative study of two bone graft substitutes-InterOss® collagen and OCS-B collagen®. J Funct Biomater. 2022; 13(1): 28. doi: https://doi.org/10.3390/jfb13010028
Jeong CG, Hollister SJ. Mechanical, permeability, and degradation properties of 3D designed poly(1,8 octanediol-co-citrate) scaffolds for soft tissue engineering. J Biomed Mater Res B Appl Biomater. 2010; 93(1): 141–9. doi: https://doi.org/10.1002/jbm.b.31568
Yulianani L, Kamadjaja DB, Rizqiawan A, Rahman MZ. Permeability analysis of bovine bone scaffold in bone tissue engineering. J Int Dent Med Res. 2022; 15(4): 1529–34. web: http://www.jidmr.com/journal/wp-content/uploads/2022/12/19-D22_1964_Dian_Agustin_Wahjuningrum3_David_Buntoro_Kamadjaja_Indonesia.pdf
Prasadh S, Wong RCW. Unraveling the mechanical strength of biomaterials used as a bone scaffold in oral and maxillofacial defects. Oral Sci Int. 2018; 15(2): 48–55. doi: https://doi.org/10.1016/S1348-8643(18)30005-3
Marcos-Campos I, Marolt D, Petridis P, Bhumiratana S, Schmidt D, Vunjak-Novakovic G. Bone scaffold architecture modulates the development of mineralized bone matrix by human embryonic stem cells. Biomaterials. 2012; 33(33): 8329–42. doi: https://doi.org/10.1016/j.biomaterials.2012.08.013
Cheng CW, Solorio LD, Alsberg E. Decellularized tissue and cell-derived extracellular matrices as scaffolds for orthopaedic tissue engineering. Biotechnol Adv. 2014; 32(2): 462–84. doi: https://doi.org/10.1016/j.biotechadv.2013.12.012
Abbasi N, Hamlet S, Love RM, Nguyen N-T. Porous scaffolds for bone regeneration. J Sci Adv Mater Devices. 2020; 5(1): 1–9. doi: https://doi.org/10.1016/j.jsamd.2020.01.007
Purba ABU. Comparison of the morphology of scaffold freeze dried bovine bone, decellularized freeze dried bovine bone, and deproteinized bovine bone material. Thesis: Universitas Airlangga; 2022.
Lin L, Zhang H, Zhao L, Hu Q, Fang M. Design and preparation of bone tissue engineering scaffolds with porous controllable structure. J Wuhan Univ Technol Sci Ed. 2009; 24(2): 174–80. doi: https://doi.org/10.1007/s11595-009-2174-5
Saksena R, Gao C, Wicox M, de Mel A. Tubular organ epithelialisation. J Tissue Eng. 2016; 7: 2041731416683950. doi: https://doi.org/10.1177/2041731416683950
Krieghoff J, Picke AK, Salbach-Hirsch J, Rother S, Heinemann C, Bernhardt R, Kascholke C, Möller S, Rauner M, Schnabelrauch M, Hintze V, Scharnweber D, Schulz-Siegmund M, Hacker MC, Hofbauer LC, Hofbauer C. Increased pore size of scaffolds improves coating efficiency with sulfated hyaluronan and mineralization capacity of osteoblasts. Biomater Res. 2019; 23(1): 1–13. doi: https://doi.org/10.1186/s40824-019-0172-z
Iviglia G, Kargozar S, Baino F. Biomaterials, current strategies, and novel nano-technological approaches for periodontal regeneration. J Funct Biomater. 2019; 10(1): 3. doi: https://doi.org/10.3390/jfb10010003
Herliansyah MK, Muzafar C, Tontowi AE. Natural bioceramics bone graft : A comparative study of calcite hydroxyapatite, gypsum hydroxyapatite, bovine hydroxyapatite and cuttlefish shell hydroxyapatite. In: Asia Pasific Industrial Engineering and Management System Conference (APIEMS). Pukhet, Thailand; 2012. p. 1137–46. web: https://www.researchgate.net/publication/332092478
Hendra Saputra AA, Triyono J, Triyono T. Bovine bone hidroksiapatite materials mechanics properties at 900°C and 1200°C of calcination temperature. Maj Ilm Mek. 2017; 16(1): 26–30. doi: https://doi.org/10.20961/mekanika.v16i1.35050
Shi C, Lu N, Qin Y, Liu M, Li H, Li H. Study on mechanical properties and permeability of elliptical porous scaffold based on the SLM manufactured medical Ti6Al4V. Garcia Aznar JM, editor. PLoS One. 2021; 16(3): e0247764. doi: https://doi.org/10.1371/journal.pone.0247764
Niakan A, Ramesh S, Tan CY, Purbolaksono J, Chandran H, Teng WD. Effect of annealing treatment on the characteristics of bovine bone. J Ceram Process Res. 2015; 16(2): 223–6. web: https://www.researchgate.net/publication/281944004
Uklejewski R, Winiecki M, Musielak G, Tokłowicz R. Effectiveness of various deproteinization processes of bovine cancellous bone evaluated via mechano-biostructural properties of produced osteoconductive biomaterials. Biotechnol Bioprocess Eng. 2015; 20(2): 259–66. doi: https://doi.org/10.1007/s12257-013-0510-2
Abdelmoneim D, Alhamdani GM, Paterson TE, Santocildes Romero ME, Monteiro BJC, Hatton P V., Ortega Asencio I. Bioactive and topographically‐modified electrospun membranes for the creation of new bone regeneration models. Processes. 2020; 8(11): 1341. doi: https://doi.org/10.3390/pr8111341
O’Brien FJ, Harley BA, Waller MA, Yannas I V, Gibson LJ, Prendergast PJ. The effect of pore size on permeability and cell attachment in collagen scaffolds for tissue engineering. Technol Health Care. 2007; 15(1): 3–17. pubmed: http://www.ncbi.nlm.nih.gov/pubmed/17264409
Ahn G, Park JH, Kang T, Lee JW, Kang H-W, Cho D-W. Effect of pore architecture on oxygen diffusion in 3D scaffolds for tissue engineering. J Biomech Eng. 2010; 132(10): 104506. doi: https://doi.org/10.1115/1.4002429
Gardin C, Ricci S, Ferroni L, Guazzo R, Sbricoli L, De Benedictis G, Finotti L, Isola M, Bressan E, Zavan B. Decellularization and delipidation protocols of bovine bone and pericardium for bone grafting and guided bone regeneration procedures. Liu X, editor. PLoS One. 2015; 10(7): e0132344. doi: https://doi.org/10.1371/journal.pone.0132344
Oftadeh R, Perez-Viloria M, Villa-Camacho JC, Vaziri A, Nazarian A. Biomechanics and mechanobiology of trabecular bone: a review. J Biomech Eng. 2015; 137(1): 010802. doi: https://doi.org/10.1115/1.4029176
Fatihhi SJ, Harun MN, Abdul Kadir MR, Abdullah J, Kamarul T, Öchsner A, Syahrom A. Uniaxial and multiaxial fatigue life prediction of the trabecular bone based on physiological loading: a comparative study. Ann Biomed Eng. 2015; 43(10): 2487–502. doi: https://doi.org/10.1007/s10439-015-1305-8
Lunardhi LC, Kresnoadi U, Agustono B. The effect of a combination of propolis extract and bovine bone graft on the quantity of fibroblasts, osteoblasts and osteoclasts in tooth extraction sockets. Dent J. 2019; 52(3): 126–32. doi: https://doi.org/10.20473/j.djmkg.v52.i3.p126-132
Copyright (c) 2025 Dental Journal
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
- Every manuscript submitted to must observe the policy and terms set by the Dental Journal (Majalah Kedokteran Gigi).
- Publication rights to manuscript content published by the Dental Journal (Majalah Kedokteran Gigi) is owned by the journal with the consent and approval of the author(s) concerned.
- Full texts of electronically published manuscripts can be accessed free of charge and used according to the license shown below.
- The Dental Journal (Majalah Kedokteran Gigi) is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License