In vitro evaluation of the effectiveness of pediatric drugs and tooth brushing on the surface roughness of different restorative dental materials used in pedodontics
Downloads
Background: Liquid oral drugs are frequently used in children. Knowing the effects of these drugs and individual oral hygiene brushing on the surface roughness (SR) of dental restorative materials with different contents used in pediatric dentistry is clinically important. Purpose: The aim is to assess the effects of various drugs and toothbrushes used in children on the SR of dental restorative materials. Methods: A total of 60 samples of different dental filling materials (polyacid-modified composite resin [compomer], glass ionomer cement [GIC], and composite resin) were prepared. The specimens were divided into six solution groups (distilled water, antibiotics, analgesics, antiepileptics, bronchodilators, and anti-allergic drugs). For each group (n = 5), two subgroups (brushing and non-brushing) were created. Surface roughness values (Ra) were measured at baseline and at the first and fourth weeks using a profilometer. The data were analyzed using analysis of variance, post-hoc analysis, and the Bonferroni test (p < 0.05). Results: The highest roughness value among all drug groups was detected in the non-resin-containing traditional GIC material. In addition, the brushing condition had a statistically significant effect on SR values (p < 0.05). The smallest change in roughness from baseline to the fourth week was observed in the non-brushed composite material in the Amoklavin group, whereas the largest change was observed in the brushed GIC material in the Depakin solution. Conclusion: Drug solutions and brushing affect the SR of restorative materials, with resin-containing materials being less affected than GIC.
Downloads
Cevanti TA, Rois MF, Sari NSP, Isnaini SI, Sasono SRA, Firdaus GMB, Setyawan H, Soetojo A, Widjiastuti I. Synthesis of cellulose fiber from coconut coir as potential application of dental flowable composite filler. J Int Dent Med Res. 2022; 15(2): 618–22. web: http://www.jidmr.com/journal/wp-content/uploads/2022/06/27-10-1-Sintetis-D22_1783_Dian_Agustin_Wahjuningrum_Indonesia.pdf
Pratiwi D, Salim RF, Putri TPS, Hasan AEZ. Evaluation of physical properties of glass ionomer cement modified by ethanolic extract of propolis. Dent J. 2024; 57(3): 172–7. doi: https://doi.org/10.20473/j.djmkg.v57.i3.p172-177
Febrina E, Evelyna A, Harmaji A, Sunendar B. Properties of nanocellulose and zirconia alumina on polymethylmethacrylate dental composite. Dent J. 2023; 56(1): 30–5. doi: https://doi.org/10.20473/j.djmkg.v56.i1.p30-35
Putri L, Rianti D, Harijanto E. Release of fluoride to the addition of nanoparticle zinc oxide with glass ionomer cements. Int J Pharm Res. 2020; 12(4): 1530–3. doi: https://doi.org/10.31838/ijpr/2020.12.04.216
Winanto MNNI, Dwiandhono I, Logamarta SW, Satrio R, Kurniawan AA. The effect of giomer’s preheating on fluoride release. Dent J. 2022; 55(4): 226–30. doi: https://doi.org/10.20473/j.djmkg.v55.i4.p226-230
Angesti D, Rachmadi P, Yuliati A. Effect of home bleaching agents on the surface hardness of flowable bulk fill resin composite. Int J Pharm Res. 2020; 12(4): 1452–7. doi: https://doi.org/10.31838/ijpr/2020.12.04.204
Carvalho F, Sampaio C, Fucio S, Carlo H, Sobrinho LC, Rontani RP. Effect of chemical and mechanical degradation on surface roughness of three glass ionomers and a nanofilled resin composite. Oper Dent. 2012; 37(5): 509–17. doi: https://doi.org/10.2341/10-406-L
Subramaniam P, Bhat D, Gupta M, Gulzar S, Shah AH. The effect of usage of antiasthmatic inhalers on color stability and surface roughness of dental restorative materials: an in vitro study. Eur J Dent. 2024; 18(2): 645–51. doi: https://doi.org/10.1055/s-0043-1771450
Voltarelli FR, Santos-Daroz CB dos, Alves MC, Cavalcanti AN, Marchi GM. Effect of chemical degradation followed by toothbrushing on the surface roughness of restorative composites. J Appl Oral Sci. 2010; 18(6): 585–90. doi: https://doi.org/10.1590/s1678-77572010000600009
Lai G, Zhao L, Wang J, Kunzelmann K-H. Surface properties and color stability of dental flowable composites influenced by simulated toothbrushing. Dent Mater J. 2018; 37(5): 717–24. doi: https://doi.org/10.4012/dmj.2017-233
Ruivo MA, Pacheco RR, Sebold M, Giannini M. Surface roughness and filler particles characterization of resin-based composites. Microsc Res Tech. 2019; 82(10): 1756–67. doi: https://doi.org/10.1002/jemt.23342
Apriani A, Naliani S, Djuanda R, Teanindar SH, Florenthe JQ, Baharudin F. Surface roughness assessment with fluoride varnish application: An in vitro study. Dent J. 2023; 56(3): 154–9. doi: https://doi.org/10.20473/j.djmkg.v56.i3.p154-159
Rizzante FAP, Bombonatti JSF, Vasconcelos L, Porto TS, Teich S, Mondelli RFL. Influence of resin-coating agents on the roughness and color of composite resins. J Prosthet Dent. 2019; 122(3): 332.e1-332.e5. doi: https://doi.org/10.1016/j.prosdent.2019.05.011
St-Pierre L, Martel C, Crépeau H, Vargas MA. Influence of polishing systems on surface roughness of composite resins: polishability of composite resins. Oper Dent. 2019; 44(3): E122–32. doi: https://doi.org/10.2341/17-140-L
Zhou C, Zhang D, Bai Y, Li S. Casein phosphopeptide-amorphous calcium phosphate remineralization of primary teeth early enamel lesions. J Dent. 2014; 42(1): 21–9. doi: https://doi.org/10.1016/j.jdent.2013.11.005
de Carvalho FG, Vieira BR, Santos RL Dos, Carlo HL, Lopes PQ, de Lima BASG. In vitro effects of nano-hydroxyapatite paste on initial enamel carious lesions. Pediatr Dent. 2014; 36(3): 85–9. pubmed: https://pubmed.ncbi.nlm.nih.gov/24960376/
Erdemir U, Sancakli HS, Yildiz E. The effect of one-step and multi-step polishing systems on the surface roughness and microhardness of novel resin composites. Eur J Dent. 2012; 6(2): 198–205. pubmed: https://pubmed.ncbi.nlm.nih.gov/22509124/
Khatri A, Nandlal B. Staining of a conventional and a nanofilled composite resin exposed in vitro to liquid ingested by children. Int J Clin Pediatr Dent. 2010; 3(3): 183–8. doi: https://doi.org/10.5005/jp-journals-10005-1074i
Headley J, Northstone K. Medication administered to children from 0 to 7.5 years in the avon longitudinal study of parents and children (ALSPAC). Eur J Clin Pharmacol. 2007; 63(2): 189–95. doi: https://doi.org/10.1007/s00228-006-0231-y
Cavalcanti AL, De Sousa RIM, Clementino MA, Vieira FF, Cavalcanti CL, Xavier AFC. In vitro analysis of the cariogenic and erosive potential of paediatric antitussive liquid oral medications. Tanzan J Health Res. 2012; 14(2): 139–45. pubmed: https://pubmed.ncbi.nlm.nih.gov/26591735/
Sinha S, Sairam G, Aidasani GL, Madanshetty P, Priya S, Kawle S. Evaluation of remineralization seen in dentin related to ceramic restorations. J Pharm Bioallied Sci. 2021; 13(Suppl 2): S1466–9. doi: https://doi.org/10.4103/jpbs.jpbs_255_21
Yoonis E, Kukletová M. Tooth-colored dental restorative materials in primary dentition. Scr Medica Fac Medicae Univ Brun Masaryk. 2009; 82(2): 108–14. web: https://is.muni.cz/do/1411/scripta_medica/archive/2009/2/scripta_medica_2_2009_108_114.pdf
Almutairi M, Moussa I, Alsaeri N, Alqahtani A, Alsulaiman S, Alhajri M. The effects of different pediatric drugs and brushing on the color stability of esthetic restorative materials used in pediatric dentistry: an in vitro study. Child (Basel, Switzerland). 2022; 9(7): 1026. doi: https://doi.org/10.3390/children9071026
Yildirim S, Uslu YS. Effects of different pediatric drugs and toothbrushing on color change of restorative materials used in pediatric dentistry. Niger J Clin Pract. 2020; 23(5): 610–8. doi: https://doi.org/10.4103/njcp.njcp_491_19
Hasan ZR, Al-Hasani NR, Malallah O. Color stability of nano resin-modified glass Ionomer restorative cement after acidic and basic medications challenge. J Baghdad Coll Dent. 2023; 35(4): 10–9. doi: https://doi.org/10.26477/jbcd.v35i4.3505
Gladys S, Van Meerbeek B, Braem M, Lambrechts P, Vanherle G. Comparative physico-mechanical characterization of new hybrid restorative materials with conventional glass-ionomer and resin composite restorative materials. J Dent Res. 1997; 76(4): 883–94. doi: https://doi.org/10.1177/00220345970760041001
Ozan G, Eren MM, Gurcan AT, Bilmez ZY, Yucel YY. A comparison of surface roughness values of various restorative materials immersed in pedodontic pre-and probiotics. Biointerface Res Appl Chem. 2021; 11(6): 14389–402. doi: https://doi.org/10.33263/BRIAC116.1438914402
Turssi CP, Hara AT, Serra MC, Rodrigues AL. Effect of storage media upon the surface micromorphology of resin-based restorative materials. J Oral Rehabil. 2002; 29(9): 864–71. doi: https://doi.org/10.1046/j.1365-2842.2002.00926.x
Barghi N, Alexander C. A new surface sealant for polishing composite resin restorations. Compend Contin Educ Dent. 2003; 24(8 Suppl): 30–3; quiz 61–2. pubmed: https://pubmed.ncbi.nlm.nih.gov/14692217/
Bollen CM, Lambrechts P, Quirynen M. Comparison of surface roughness of oral hard materials to the threshold surface roughness for bacterial plaque retention: a review of the literature. Dent Mater. 1997; 13(4): 258–69. doi: https://doi.org/10.1016/s0109-5641(97)80038-3
Fathoni FR, Harijanto E, Soekartono RH. Addition of zinc oxide (ZnO) nanoparticles on type II glass ionomer cements of surface roughness. Biochem Cell Arch. 2020; 20(Suppl 1): 2983–6. doi: https://doi.org/10.35124/bca.2020.20.S1.2983
Briso ALF, Caruzo LP, Guedes APA, Catelan A, dos Santos PH. In vitro evaluation of surface roughness and microhardness of restorative materials submitted to erosive challenges. Oper Dent. 2011; 36(4): 397–402. doi: https://doi.org/10.2341/10-356-L
Attin T, Knöfel S, Buchalla W, Tütüncü R. In situ evaluation of different remineralization periods to decrease brushing abrasion of demineralized enamel. Caries Res. 2001; 35(3): 216–22. doi: https://doi.org/10.1159/000047459
Pinelli M-M, Catelan A, de Resende L-F-M, Soares L-E-S, Aguiar F-H-B, Liporoni P-C-S. Chemical composition and roughness of enamel and composite after bleaching, acidic beverages and toothbrushing. J Clin Exp Dent. 2019; 11(12): e1175–80. doi: https://doi.org/10.4317/jced.56442
Finer Y, Jaffer F, Santerre JP. Mutual influence of cholesterol esterase and pseudocholinesterase on the biodegradation of dental composites. Biomaterials. 2004; 25(10): 1787–93. doi: https://doi.org/10.1016/j.biomaterials.2003.08.029
Anuradha BR, Katta S, Kode VS, Praveena C, Sathe N, Sandeep N, Penumarty S. Oral and salivary changes in patients with chronic kidney disease: A clinical and biochemical study. J Indian Soc Periodontol. 2015; 19(3): 297–301. doi: https://doi.org/10.4103/0972-124X.154178
Tanweer N, Jouhar R, Ahmed MA. Influence of ultrasonic excitation on microhardness of glass ionomer cement. Technol Health Care. 2020; 28(6): 587–92. doi: https://doi.org/10.3233/THC-191988
Gurdogan Guler EB, Bayrak GD, Unsal M, Selvi Kuvvetli S. Effect of pediatric multivitamin syrups and effervescent tablets on the surface microhardness and roughness of restorative materials: An in vitro study. J Dent Sci. 2021; 16(1): 311–7. doi: https://doi.org/10.1016/j.jds.2020.03.017
dos Santos MPA, Patrocínio AL, da Silva Fidalgo TK, Camargo SS, Maia LC. Surface degradation of resin-based materials by pediatric syrup containing amoxicillin under erosive challenge. Pesqui Bras Odontopediatria Clin Integr. 2017; 17(1): 1–12. doi: https://doi.org/10.4034/PBOCI.2017.171.22
Ayaz EA, Bagis B, Turgut S. Effect of antiasthmatic medication on the surface roughness and color stability of dental restorative materials. Med Princ Pract. 2014; 23(1): 24–8. doi: https://doi.org/10.1159/000354297
Abdelmegid FY, Salama FS, Al-Jameel MM, Al-Rasheed TT, El-Sharawy MA. Effects of fruit drinks on surface roughness of two esthetic restorative materials. Stomatologija. 2019; 21(2): 47–52. pubmed: https://pubmed.ncbi.nlm.nih.gov/32108656/
Jamal DY, Farsi NM, El-Housseiny AA, Felemban OM. Effects of pediatric liquid medications on surface properties of dental restorations. Med Sci. 2022; 26: 1–9. doi: https://doi.org/10.54905/disssi/v26i120/ms57e2000
Copyright (c) 2025 Dental Journal

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
- Every manuscript submitted to must observe the policy and terms set by the Dental Journal (Majalah Kedokteran Gigi).
- Publication rights to manuscript content published by the Dental Journal (Majalah Kedokteran Gigi) is owned by the journal with the consent and approval of the author(s) concerned.
- Full texts of electronically published manuscripts can be accessed free of charge and used according to the license shown below.
- The Dental Journal (Majalah Kedokteran Gigi) is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License