The effects of Acanthus ilicifolius chloroform extract on TLR-2 expression of macrophages in oral candidiasis

Dwi Andriani, Agni Febrina Pargaputri

= http://dx.doi.org/10.20473/j.djmkg.v51.i4.p205-209
Abstract views = 47 times | views = 43 times

Abstract


Background: Immunosuppressed conditions due to long-term corticosteroid and tetracycline consumption are susceptible to fungal invasion, especially by Candida albicans (C. albicans), that requires treatment of oral candidiasis. Toll like receptor-2 (TLR-2) plays a role in candida recognition. Nystatin is regularly employed for oral candidiasis, but produces certain side-effects. Chloroform extract of Acanthus ilicifolius (A. ilicifolius) leaves represents both a potent inhibitor of C. albicans growth and an antioxidant. Purpose: This study aimed to compare the effect of A. ilicifolius leaf chloroform extract and nystatin treatment on TLR-2 expression in oral candidiasis immunosupressed models. Methods: This study constitutes a true experimental investigation incorporating a post test-only control group design. 20 healthy male Rattus novergicus (Wistar), aged 12 weeks and with an average weight of 250g, were immunosuppressed through oral administration of dexamethasoneand tetracycline for a period of 21 days before being induced with C. albicans (ATCC-10231) 6 x 108 for two weeks. The subjects were divided into five groups (n=4/group): healthy (H), no-treatment(P), nystatin treatment(N), A. Ilicifollius (8%) treatment (AI-1) and A. ilicifollius (16%) treatment (AI-2). The subjects were treated for 14 days, with their tongue being subsequently biopsied. TLR-2 expression was subjected to immunohistochemical examination, observed under a microscope (400x magnification) and statistically analyzed (one-way Anova, LSD-test, p<0.05). Results: TLR-2 expression of P (6.25 ± 2.5), N (11.25 ± 0.96), AI-1 (13.00 ± 1.15), AI-2 (12.75 ± 1.7) was higher than H (1.75 ± 0.5). Significant differences existed between N to P, N, AI-1, AI-2; P to N, AI-1 and AI-2 (p<0.05). No significant differences were present between N, AI-1 and AI-2 (p < 0.05). Conclusion: A. ilicifolius extract can increase expression of TLR-2 in oral Candidiasis-immunosuppressed models. A. ilicifolius extract produces the same effect in increasing TLR-2 expression when compared to nystatin.

Keywords


achanthus ilicifolius; Candida albicans; immunosupressed; oral candidiasis; TLR-2

Full Text:

PDF

References


van de Veerdonk FL, Kullberg B-J, Netea MG. Pathogenesis of invasive candidiasis. Curr Opin Crit Care. 2010; 16(5): 453–9.

Rao PK. Oral candidiasis – a review. Sch J Med. 2012; 2(2): 26–30.

Wahyuli HN, Suyoso S, Prakoeswa CRS. Manifestasi klinis dan identifikasi spesies penyebab kandidiasis oral pada pasien HIV/AIDS RSUD Dr. Soetomo Surabaya. Berk Ilmu Penyakit Kulit dan Kelamin. 2010; 22: 11–6.

Martins N, Ferreira ICFR, Barros L, Silva S, Henriques M. Candidiasis: predisposing factors, prevention, diagnosis and alternative treatment. Mycopathologia. 2014; 177(5–6): 223–40.

Acharya S, Lohe VK, Bhowate RR. Diagnosis and management of pseudomembranous candidiasis. J Otolaryngol Res. 2017; 8(3): 1–4.

Mogensen TH. Pathogen recognition and inflammatory signaling in innate immune defenses. Clin Microbiol Rev. 2009; 22(2): 240–73.

Netea MG, Gow NAR, Munro CA, Bates S, Collins C, Ferwerda G, Hobson RP, Bertram G, Hughes HB, Jansen T, Jacobs L, Buurman ET, Gijzen K, Williams DL, Torensma R, McKinnon A, MacCallum DM, Odds FC, Van der Meer JWM, Brown AJP, Kullberg BJ. Immune sensing of Candida albicans requires cooperative recognition of mannans and glucans by lectin and Toll-like receptors. J Clin Invest. 2006; 116(6): 1642–50.

Moyes DL, Naglik JR. Mucosal immunity and candida albicans infection. Clin Dev Immunol. 2011; 2011: 1–9.

Gow NAR, Netea MG. Medical mycology and fungal immunology: new research perspectives addressing a major world health challenge. Philos Trans R Soc Lond B Biol Sci. 2016; 371: 1–10.

Lyu X, Zhao C, Hua H, Yan Z. Efficacy of nystatin for the treatment of oral candidiasis: a systematic review and meta-analysis. Drug Des Devel Ther. 2016; 10: 1161–71.

Ganesh S, Vennila JJ. Phytochemical analysis of Acanthus ilicifolius and Avicennia officinalis by GC-MS. Res J Phytochem. 2011; 5: 60–5.

Singh D, Aeri V. Phytochemical and pharmacological potential of Acanthus ilicifolius. J Pharm Bioallied Sci. 2013; 5: 17–20.

Firdaus M, Prihanto AA, Nurdiani R. Antioxidant and cytotoxic activity of Acanthus ilicifolius flower. Asian Pac J Trop Biomed. 2013; 3: 17–21.

Mani Senthil Kumar KT, Gorain B, Roy DK, Zothanpuia, Samanta SK, Pal M, Biswas P, Roy A, Adhikari D, Karmakar S, Sen T. Anti-inflammatory activity of Acanthus ilicifolius. J Ethnopharmacol. 2008; 120: 7–12.

Almagrami AA, Alshawsh MA, Saif-Ali R, Shwter A, Salem SD, Abdulla MA. Evaluation of chemopreventive effects of Acanthus ilicifolius against azoxymethane-induced aberrant Crypt Foci in the rat colon. McCormick DL, editor. PLoS One. 2014; 9(5): 1–12.

Govindasamy C, Arulpriya M. Antimicrobial activity of Acanthus ilicifolius: skin infection pathogens. Asian Pacific J Trop Dis. 2013; 3(3): 180–3.

Prabowo A, Teguh PB, Andriani D. Perbedaan efektivitas ekstrak daun mangrove Acanthus ilicifolius dengan sodium bikarbonat 5% terhadap penurunan jumlah koloni Candida albicans pada perendaman nilon termoplastik. Dent J Kedokt Gigi. 2015; 9(2): 198–208.

Andriani D, Revianti S. IL-17 expression in oral-candidiasis-immunosuppressed-models treated with acanthus ilicifolius extracts. In: 2017 South East Asian Division Meeting. Taipei, Taiwan: International Association for Dental Research; 2017. p. 10–3.

Subha TS, Gnanamani A. Candida biofilm perfusion using active fractions of Acorus calamus. J Anim Plant Sci. 2009; 4(2): 363–71.

Thirunavukkarasu P, Ramanathan T, Ramkumar L. Hemolytic and anti microbial effect in the leaves of Acanthus ilicifolius. J Pharmacol Toxicol. 2011; 6(2): 196–200.

Sofia S, Merlee Teresa M V. Isolation of bioactive compounds ompounds by GC-MS and biological iological potentials of acanthus ilicifolius, L. Int Res J Biol Sci. 2017; 6(6): 7–19.

Furtado NAJC, Pirson L, Edelberg H, Miranda LM, Loira-Pastoriza C, Preat V, Larondelle Y, André CM. Pentacyclic triterpene bioavailability: an overview of in vitro and in vivo studies. Molecules. 2017; 22(3): 1–24.

Matsumura N, Takeyama Y, Ueda T, Yasuda T, Shinzeki M, Sawa H, Nakajima T, Kuroda Y. Decreased expression of Toll-like receptor 2 and 4 on macrophages in experimental severe acute pancreatitis. Kobe J Med Sci. 2007; 53(5): 219–27.

Villamón E, Gozalbo D, Roig P, O’Connor JE, Fradelizi D, Gil ML. Toll-like receptor-2 is essential in murine defenses against Candida albicans infections. Microbes Infect. 2004; 6: 1–7.

Blasi E, Mucci A, Neglia R, Pezzini F, Colombari B, Radzioch D, Cossarizza A, Lugli E, Volpini G, Giudice G Del, Peppoloni S. Biological importance of the two Toll-like receptors, TLR2 and TLR4, in macrophage response to infection with Candida albicans. FEMS Immunol Med Microbiol. 2005; 44: 69–79.

Tessarolli V, Gasparoto TH, Lima HR, Figueira EA, Garlet TP, Torres SA, Garlet GP, Da Silva JS, Campanelli AP. Absence of TLR2 influences survival of neutrophils after infection with Candida albicans. Med Mycol. 2010; 48: 129–40.

Jouault T, El Abed-El Behi M, Martínez-Esparza M, Breuilh L, Trinel P-A, Chamaillard M, Trottein F, Poulain D. Specific recognition of Candida albicans by macrophages requires galectin-3 to discriminate Saccharomyces cerevisiae and needs association with TLR2 for signaling. J Immunol. 2006; 177(7): 4679–87.

Netea MG, Brown GD, Kullberg BJ, Gow NAR. An integrated model of the recognition of Candida albicans by the innate immune system. Nat Rev Microbiol. 2008; 6: 67–78.

Netea MG, Sutmuller R, Hermann C, Van der Graaf CAA, Van der Meer JWM, van Krieken JH, Hartung T, Adema G, Kullberg BJ. Toll-like receptor 2 suppresses immunity against Candida albicans through induction of IL-10 and regulatory T cells. J Immunol. 2004; 172(6): 3712–8.

Franco LH, Fleuri AKA, Pellison NC, Quirino GFS, Horta C V., de Carvalho RVH, Oliveira SC, Zamboni DS. Autophagy downstream of endosomal Toll-like receptor signaling in macrophages is a key mechanism for resistance to Leishmania major infection. J Biol Chem. 2017; 292(32): 13087–96.


Refbacks

  • There are currently no refbacks.


View My Stats