Cellulase Enzyme Production Using Actinobacillus sp. on Several Alternative Growth Media
Downloads
Cellulase enzymes are widely used in the food, beverage, animal feed, textile, and paper industries. The high cost of producing enzymes and low enzyme activity provides opportunities for using chemicals, and efforts are needed to produce cellulase enzymes economically through media optimization. This research aims to find alternative media that make it possible to produce cellulase enzymes with high activity. This research created a control media (M0) using pro-analysis chemicals and CMC as a carbon source. Three types of cellulolytic bacterial growth media were also created, consisting of technical chemicals, rice straw as a substrate, and different protein sources. M1: alternative media using urea as a protein source; M2: alternative media using powdered milk as a protein source; and M3: alternative media using chicken liver as a protein source. A total of 1% of cellulolytic bacteria (Actinobacillus sp.) was grown in each media and then incubated at 40°C for 33 hours at a speed of 140 rpm, and the production curve and cellulase enzyme activity were measured at every 3-hour interval. The results showed that the highest cellulase enzyme production was achieved at 24 hours using alternative media with powdered milk (M2) as a protein source. The cellulase enzyme activity produced was 2.9612 µ/ml.
Amraini, S.Z., L.P. Ariyani, H. Hermansyah, S. Setyahadi, S.F. Rahman, D.H. Park and M. Gozan. 2017. Production and Characterization of Cellulase from E. coli EgRK2 Recombinant Based on Oil Palm Empty Fruit Bunches. Biotechnol. Bioprocess Eng, 22: 287–295.
Anggara, K., Y. Zhu, G. Fittolani, Y. Yu, T.T. Ergas, M. Delbianco, S. Rauschenbacha, S. Abb, P.H. Seeberger and K. Kern. 2021. Identifying the origin of local flexibility in a carbohydrate polymer. Proc. Natl. Acad. Sci, 118(23): e2102168118.
Ayivi, R.D, S.A. Ibrahim, A. Krastanov, A. Somani and S.A. Siddiqui. 2022. The impact of alternative nitrogen sources on the growth and viability of Lactobacillus delbrueckii ssp. bulgaricus. J. Dairy Sci, 105(10): 7986-7997.
Badino, S.F., S.J. Christensen, J. Kari, M.S. Windahl, S. Hvidt, K. Borch and P. Westh. 2017. Exo-exo synergy between Cel6A and Cel7A from Hypocrea jecorina: Role of carbohydrate binding module and the endo-lytic character of the enzymes. Biotechnol. Bioeng, 114(8): 1639-1647.
Basak, P., T. Adhikary, P. Das, M. Shee, T. Dutta, S. Biswas, S. Paul and S. Manna. 2021. Cellulases in paper and pulp, brewing and food industries: Principles associated with its diverse applications. In: Current Status and Future Scope of Microbial Cellulases. Ed: Tuli DK and Kuila A. 275-293.
Behera, B.C., B.K. Sethi, R.R. Mishra, S.K. Dutta and H.N. Thatoi. 2017. Microbial cellulases - diversity & biotechnology with reference to mangrove environment: A review. J. Genet. Eng. Biotechnol, 15(1): 197-210.
Biswas, S., M. Al Saber, I.A. Tripty, M.A. Karim, M.A. Islam, M.S. Hasan, A.S.M.R. Ul Alam, M.I.K. Jahid and M.N. Hasan. 2020. Molecular characterization of cellulolytic (endo- and exoglucanase) bacteria from the largest mangrove forest (Sundarbans), Bangladesh. Ann. Microbiol, 70(68): 1-11.
Champreda, V., W. Mhuantong, H. Lekakarn, B. Bunterngsook, P. Kanokratana, X.Q. Zhao, F. Zhang, H. Inoue, T. Fujii and L. Eurwilaichitr. 2019. Designing cellulolytic enzyme systems for biorefinery: from nature to application. J. Biosci. Bioeng, 128(6): 637-654.
Chavda, N.R., K.S. Panchal, R.K. Chaudhary and P.H. Patel. 2021. Bacterial Cellulases and its Applications: A Review. Anal. Biochem, 10(8): 1000400.
Cheng, F., H. Chen, N. Lei, M. Zhang and H. Wan. 2019. Effects of carbon and nitrogen sources on activity of cell envelope proteinase produced by Lactobacillus plantarum Lp69. Acta Univ. Cibiniensis Ser. E: Food Technol, 23(1): 11-18.
De Mastro, F., A. Traversa, F. Matarrese, C. Cocozza and G. Brunetti. 2023. Influence of Growing Substrate Preparation on the Biological Efficiency of Pleurotus ostreatus. Horticulturae, 9(4): 439.
Dec, B., K. Kiełczewska, M. Smoczyński, M. Baranowska and J. Kowalik. 2023. Properties and Fractal Analysis of High-Protein Milk Powders. Appl. Sci, 13(6): 3573.
Demain, A.L. and J.L. Adrio. 2008. Contributions of microorganisms to industrial biology. J. Mol. Biotechnol, 38(1): 41–55.
De Reuse, H. and S. Skouloubris. 2001. Nitrogen Metabolism. In: Helicobacter pylori: Physiology and Genetics. Mobley HLT, Mendz GL, Hazell SL, editors. Washington (DC): ASM Press.
Dourou, D., A. Grounta, A.A. Argyri and G. Froutis. 2021. Rapid Microbial Quality Assessment of Chicken Liver Inoculated or Not With Salmonella Using FTIR Spectroscopy and Machine Learning. Front. Microbiol, 11(1): 623788
Ejaz, U., M. Sohail and A. Ghanemi. 2021. Cellulases: From Bioactivity to a Variety of Industrial Applications. Biomimetics (Basel), 6(3): 44.
Elisashvili, V., E. Kachlishvili and M. Penninckx. 2008. Effect of growth substrate, method of fermentation, and nitrogen source on lignocellulose-degrading enzymes production by white-rot basidiomycetes. J. Ind. Microbiol. Biotechnol, 35(11): 1531-1538.
Hailemariam, S., S. Zhao, Y. He and J. Wang. 2021. Urea transport and hydrolysis in the rumen: A review. Anim. Nutr, 7(4): 2405-6545.
Hayek, S.A., R. Gyawali, S.O. Aljaloud, A. Krastanov and S.A. Ibrahim. 2019. Cultivation media for lactic acid bacteria used in dairy products. J. Dairy Res, 86(4): 490-502.
Jayasekara, S. and R. Ratnayake. 2019. Microbial Cellulases: An Overview and Applications. In: Cellulose, Pascual, A.R. and Martin, M.E. (Eds.). Intechopen.
Kashem, M.A., M.A. Manchur, M.S. Rahman and M.N. Anwar. 2004. Effect of carbon and nitrogen sources on the production of reducing sugars, extra-cellular protein and cellulolytic enzymes by two cellulolytic bacterial isolates. Pak. J. Biol. Sci, 7: 1660–1663.
Korsa, G., R. Konwarh, C. Masi, A. Ayele and S. Haile. 2023. Microbial cellulase production and its potential application for textile industries. Ann. Microbiol, 73(1): 13.
Kumar, V.A., R.S.C. Kurup, C. Snishamol and G.N. Prabhu. 2019. Role of cellulases in food, feed, and beverage industries. Green Bio-processes, 323-343.
Kumla, J., N. Suwannarach, K. Sujarit, W. Penkhrue, P. Kakumyan, K. Jatuwong, S. Vadthanarat and S. Lumyong. 2020. Cultivation of Mushrooms and Their Lignocellulolytic Enzyme Production Through the Utilization of Agro-Industrial Waste. Molecules, 25(12): 2811.
Mahmoudi-Abyane, M., D. Alipour and H.R. Moghimi. 2020. Effects of different sources of nitrogen on performance, relative population of rumen microorganisms, ruminal fermentation and blood parameters in male feed lotting lambs. Animal, 14(7): 1438-1446.
Mishra, B.K., A.K. Pandey and Lata. 2007. Lignocellulolytic enzyme production from submerged fermentation of paddy straw. Indian J. Microbiol, 47(2): 176-179.
Mourad, G., G. Bettache and M. Samir. 2014. Composition and nutritional value of raw milk. Issues Bio. Sci. Pharma. Res, 2(10): 115-122
Patel, A.K., R.R. Singhania, S.J. Sim and A. Pandey. 2019. Thermostable cellulases: Current status and perspectives. Bioresour. Technol, 279(1): 385-392.
Robinson, P.K. 2015. Enzymes: principles and biotechnological applications. Essays Biochem, 59(1): 1–41.
Staudenbauer, W.L. and W.H. Schwarz. 2004. Hydrolysis of Crystalline Cellulose by Bacterial Enzyme Systems. In: Fachgebiet Mikrobielle Biotechnologie.
Valls, C., F.I.J. Pastor, M.B. Roncero, T. Vidal, P. Diaz, J. Martínez and S.V. 2019. Valenzuela. Assessing the enzymatic effects of cellulases and LPMO in improving mechanical fibrillation of cotton linters. Biotechnol. Biofuels, 12(1): 161.
Zhang, Y.Z., W.X. Zhang and X.L. Chenc. 2020. Mechanisms for induction of microbial extracellular proteases in response to exterior proteins. Appl. Environ. Microbiol, 86(19): e01036-20.
Zhang, B., L. Wu, X. Liu and J. Bao. 2022. Plant proteins as an alternative nitrogen source for chiral purity L-Lactic acid fermentation from Lignocellulose feedstock. Fermentation, 8(10): 546.
Copyright (c) 2024 Aswin Rafif Khairullah, Mohammad Anam Al-Arif , Mirni Lamid, Widya Paramita Lokapirnasari; Abdullah Hasib
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Veterinary Medicine Journal by Unair is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
1. The Journal allows the author to hold the copyright of the article without restrictions.
2. The Journal allows the author(s) to retain publishing rights without restrictions
3. The legal formal aspect of journal publication accessibility refers to Creative Commons Attribution Share-Alike (CC BY-SA).