The Correlation between the Weight of Ovary, Number of Follicles, and Quality of Oocytes of Culling Female Bovine in Slaughterhouse
Downloads
The purpose of this research was to determine the correlation between the weight of the ovary, the number of follicles, and the quality of the oocytes from the culling female bovine obtained from the slaughterhouse. The variation may affect the potential of the ovary to produce follicles. Paired ovaries were obtained from female bovines. Follicle numbers were recorded and divided into three size categories (small: 3 mm, medium: < 3 mm-8 mm, and large: > 8 mm). Oocytes were aspirated and the number of oocytes was recorded and graded into four categories (grades A, B, C, and D). There was a positive correlation between the weight of the ovary and the number of follicles, which is 0.560 with the regression equation y = 3.52 + 0.501 x. There was a positive correlation between the number of follicles and the number of oocytes, which is 0.546 with the regression equation y =2.48 + 1.204 x. There was a positive correlation between the number of oocytes and the grade of oocytes, which is 0.520, with the regression equation y = 0.93 + 0.800 x. There was no correlation between the weight of the ovary and oocyte grade A, which is 0.013.
Agustanty, A, and B. Andre. 2022. Resistance pattern of vibrio cholerae bacteria to ciprofloxacin and tetracycline antibiotics. J. Heal. Sci, 6(1): 73-8.
Ahmad, Q., T. Sabrina, M.F. Diba, E. Amalia, and R.A. Putra. 2022. Discussion of Klebsiella pneumoniae infection with Extended-spectrum β-lactamase (ESBL) in COVID-19 patients at Dr. Mohammad Hoesin Hospital period January 2021- June 2021. J. Med. Heal, 10(2): 186-98.
Aklilu, E., A. Harun, and K.K.B. Singh. 2022. Molecular characterization of blaNDM, blaOXA-48 , mcr-1 and blaTEM-52 positive and concurrently carbapenem and colistin resistant and extended-spectrum beta-lactamase-producing Escherichia coli in chicken in Malaysia. J. Bmc. Vet. Res, 18(1): 1–10.
Aminul, P., S. Anwar, M.M.A. Molla, and M.R.A. Miah. 2021. Evaluation of antibiotic resistance patterns in clinical isolates of Klebsiella pneumoniae in Bangladesh. J. Bio. Healt, 3(6): 301-06.
Aslam, B., W. Wang, M.I. Arshad, M. Khurshid, S. Muzammil, and M.H. Rasool. 2018. Antibiotic resistance: an overview of the global crisis. J. Inf. Drug. Res, 11(1): 1645-58.
Aslam, B., T.H. Chaudhry, M.I. Arshad, S. Muzammil, A.B. Siddique, N. Yasmeen, M. Khurshid, A. Amir, M. Salman, M.H. Rasool, X. Xia, and Z. Baloch. 2022. Distribution and genetic diversity of multi-drug-resistant Klebsiella Pneumoniae at the human–animal–environment interface in Pakistan. J. Fron. Mic, 13(1): 898248.
Council of the European Union. 2023. Proposal for a council recommendation on stepping up EU actions to combat antimicrobial resistance in a one health approach.
Chung, P.Y. 2016. The emerging problems of Klebsiella pneumoniae infections: carbapenem resistance and biofilm formation. J. Mic. Let, 363(20): 219.
Diren Sigirci, B., B. Celik, B. Halac, M.C. Adiguzel, I. Kekec, K. Metiner, S. Ikiz, A.F. Bagcigil, N.Y. Ozgur, S. Ak, and B.B. Kahraman. 2020. Antimicrobial resistance profiles of Escherichia coli isolated from companion birds. J. Kin. Saud. Univ. Sci, 32(1): 1069–1073.
ECDC, WHO, 2023. Antimicrobial resistance surveillance in Europe 2023. EU Publications.
Galani, I., I. Karaiskos, I. Karantani, V. Papoutsaki, S. Maraki, V. Papaioannou, and H. Giamarellou. 2018. Epidemiology and resistance phenotypes of carbapenemase-producing Klebsiella pneumoniae in Greece, 2014 to 2016. J. Eur, 23(31): 1700775.
García-Menino, I., L. Forcelledo, Y. Rosete, E. García-Prieto, D. Escudero, and J. Fernandez. 2021. Spread of OXA-48-producing Klebsiella pneumoniae among COVID-19-infected patients: the storm after the storm. J. Infect. Pub Health, 14(1): 50–2.
Gomez, M., A. Valverde, R. del Campo, J.M. Rodríguez, and A. Maldonado-Barragan. 2021. Phenotypic and molecular characterization of commensal community-acquired and nosocomial Klebsiella spp. J. Micr, 9(11): 2344.
Gonzalez-Ferrer, S., H.F. Penaloza, J.A. Budnick, W.G. Bain, H.R. Nordstrom, J.S. Lee, and D.V. Tyne. 2021. Finding order in the Chaos: outstanding questions in Klebsiella pneumoniae pathogenesis. J. Inf. Immu, 89(4): e00693-20.
Gonzalez-Rivas, F., C. Ripolles-Avila, F. Fontecha-Umana, A.G. Ríos-Castillo, and J.J. Rodríguez-Jerez. 2018. Biofilms in the spotlight: detection, quantification, and removal methods. J. Compr. Rev, 17(5): 1261–76.
Guerra, M.E.S., G. Destro, B. Vieira, A.S. Lima, L.F.C. Ferraz, A.P. Hakansson, M. Darrieux, and T.R. Converso. 2022. Klebsiella pneumoniae biofilms and their role in disease pathogenesis. J. Front. Cell. Infect. Micr, 12, 877995.
Hu, Y., J. Anes, S. Devineau, and S. Fanning. 2021. Klebsiella pneumoniae: prevalence, reservoirs, antimicrobial resistance, pathogenicity, and infection: A hitherto unrecognized zoonotic bacterium. J. Food. Pat. Dis, 18(2): 63–84.
Huy, T.X.N. 2024. Overcoming Klebsiella pneumoniae antibiotic resistance: new insights into mechanisms and drug discovery. J. Bas. Appl. Sci, 13(13): 3-8.
Indana, K., M.H. Effendi, and S. Soeharsono. 2021. Ampicillin antibiotic resistance test on Escherichia coli bacteria isolated from several farms in Surabaya. J. Trop. Env. Liv, 3(1): 37-43.
Karimi, K., O. Zarei, P. Sedighi, M. Taheri, A. Doosti-Irani, and L. Shokoohizadeh. 2021. Investigation of antibiotic resistance and biofilm formation in clinical isolates of Klebsiella pneumoniae. J. Int. Mic, 12(1): 2-6.
Lee, C.R., J.H. Lee, K.S. Park, Y.B. Kim, B.C. Jeong, and S.H. Lee. 2016. Global dissemination of carbapenemase-producing Klebsiella pneumoniae: epidemiology, genetic context, treatment options, and detection methods. J. Fron. Mic, 7: 184902.
Li, Y., S. Kumar, L. Zhang, H. Wu, and H. Wu. 2023. Characteristics of antibiotic resistance mechanisms and genes of Klebsiella pneumoniae. J. Open. Med, 18(1): 7.
Maida, S, and A.P.L. Kinanti. 2019. Antibacterial activity of amoxicillin against gram-positive bacteria and gram-negative bacteria. J. Pijar, 14(3): 189-91.
Murray, C.J., K.S. Ikuta, F. Sharara, L. Swetschinski, G. Robles Aguilar, A. Gray, C. Han, C. Bisignano, P. Rao, E. Wool, S.C. Johnson, A.J. Browne, M.G. Chipeta, F. Fell, S. Hackett, G. Haines-Woodhouse, B.H. Kashef Hamadani, E.A.P. Kumaran, B. McManigal, and M. Naghavi. 2022. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. J. Lanc,399(10325): 629–55.
Nakhaee, P., H.Z. Moghadam, S. Shokrpoor, and J. Razmyar. 2022. Klebsiella pneumoniae infection in canaries (Serinus canaria Domestica): a case report. J. Vet. Res, 23(3): 280.
Navon-Venezia, S., K. Kondratyeva, and A. Carattoli. 2017. Klebsiella pneumoniae: a major worldwide source and shuttle for antibiotic resistance. J. Fems. Mic. Rev, 41: 252–75.
O’Neill, J. 2016. Tackling drug-resistant infections globally: final report and recommendations. Review on Antimicrobial Resistance.
Paczosa, M.K, and J. Mecsas. 2016. Klebsiella pneumoniae: going on the offense with a strong defense. J. Mic. Mol. Biol. Rev, 80: 629–61.
Pham, M.H., M.A. Beale, M.A. Khokhar, H.T. Hoa, P. Musicha, G.A. Blackwell, and N.R. Thomson. 2023. Evidence of widespread endemic populations of highly multidrug-resistant Klebsiella pneumoniae in hospital settings in Hanoi, Vietnam: a prospective cohort study. Lancet. Microbe, 4(4): 255-63.
Putra, M.D.D., I.G.K. Suarjana, and K.P.G. Tono. 2023. Isolation and identification of Klebsiella sp. in kintamani dog diarrhea. J. Uda. Vet. Bul, 15(3): 377-82.
Pratiwi, R.H. 2017. Mekanisme pertahanan bakteri patogen terhadap antibiotik. J. Pro. Life, 4(3): 418-29.
Riley, L.W. 2020. Extraintestinal foodborne pathogens. J. Annu. Rev. Food Sci. Tech, 11(1): 275–94.
Ramos-Vivas, J., I. Chapartegui-Gonzalez, M. Fernandez-Martínez, C. Gonzalez-Rico, J. Fortún, R. Escudero, F. Marco, L. Linares, M. Montejo, M. Aranzamendi, P. Muno, M. Valerio, J.M. Aguado, E. Resino, I.G. Ahufinger, A.P. Vega, L. Martínez-Martínez, and M.C. Farinas. 2019. Biofilm formation by multidrug-resistant Enterobacteriaceae strains isolated from solid organ transplant recipients. J. Sci. Rep, 9(1): 8928.
Santaniello, A., M. Sansone, A. Fioretti, and L.F. Menna. 2020. Systematic review and meta-analysis of the occurrence of ESKAPE bacteria group in dogs, and the related zoonotic risk in animal-assisted therapy, and in animal-assisted activity in the health context. Int. J. Env. Res. Pub Heal, 17(9): 3278.
Santoso, I, and T. Rostinawati. 2022. Development of meropenem antibiotic resistance to pseudomonas aeruginosa, acinetobacter baumannnii, and klebsiella pneumoniae in Indonesia. J. Far, 20(3): 123-134.
Shree, S., E. Suman, H. Kotian, S.H. Paul, and S. Shenoy. 2024. Effect of Klebsiella-specific phage on multidrug-resistant Klebsiella pneumoniae-an experimental study. J. Med. Mic, 47, 100515.
Sequeira, R.P., J.A.K. McDonald, J.R. Marchesi, and T.B. Clarke. 2020. Commensal bacteroidetes protect against Klebsiella pneumoniae colonization and transmission through IL-36 signalling. J. Nat. Mic, 5(2): 304–13.
Setyowati, M.E, and Y. Silviani. 2020. Sensitivity pattern of Klebsiella pneumoniae for cefotaxime, ceftazidime, and ceftriaxone antibiotics in pneumonia patients. J. Ciha, 1(1): 153-57.
Silva-Bea, S., M. Romero, A. Parga, J. Fernández, A. Mora, and A. Otero. 2024. Comparative analysis of multidrug-resistant Klebsiella pneumoniae strains of food and human origin reveals overlapping populations. J. Int. Food Mic, 413, 110605.
Simanjuntak, H.A., H. Simanjuntak, S. Maimunah, Rahmiati and T.S. Situmorang. 2022. Zone of inhibition diameter of amoxicillin and tetracycline antibiotics against Escherichia coli. J. Herb. Med, 5(2): 2621-25.
Soleha, T.U, and G.W.P. Edwin. 2019. Resistance patterns of feneration III cephalosporins and merofenem in Klebsiella pneumoniae bacteria at the Lampung regional health laboratory. J. Lam. Univ. Med, 3(1): 141-46.
Suarjana, I.G.K, and K.T.P. Gelgel. 2021. Isolation and identification of klebsiella sp. Nasal cavity origin in the pig infected with porcine respiratory disease complex. J. Ind. Med. Vet, 10(6): 917-25.
Syari’ati, A., M. Arshadi, M.A. Khosrojerdi, M. Abedinzadeh, M. Ganjalishahi, A. Maleki, M. Heidary, and S. Khoshnood. 2022. The resistance mechanisms of bacteria against ciprofloxacin and new approaches for enhancing the efficacy of this antibiotic. J. Fron. Pub. Heal, 10(1): 98.
Wareth, G, and H. Neubauer. 2021. The animal-foods-environment interface of Klebsiella Pneumoniae in Germany: An observational study on pathogenicity, resistance development and the current situation. J. Vet. Res, 52(1): 16.
WHO, 2023. GLASS manual for antimicrobial resistance surveillance in common Bacteria causing human infection. World Health. Organization. ISBN: 978-92-4-007660-0. https://www.who.int/publications/i/item/9789240076600.
Wu, X., J. Liu, J. Feng, M.A.B. Shabbir, Y. Feng, R. Guo, M. Zhou, S. Hou, G. Wang, H. Hao, G. Cheng, and Y. Wang. 2022. Epidemiology, environmental risks, virulence, and resistance determinants of Klebsiella pneumoniae from dairy cows in Hubei China. J. Fron. Mic, 13: 858799.
Wong, M.H.Y., E.W.C. Chan, and S. Chen. 2015. Evolution and dissemination of OqxAB-like efflux pumps, an emerging quinolone resistance determinant among members of Enterobacteriaceae. J. Ant. Age. Chem, 59(6): 3290-97.
Yekani, M., H.B. Baghi, F.Y. Sefidan, R. Azargun, M.Y. Memar, and R. Ghotaslou. 2018. The rates of quinolone, trimethoprim/sulfamethoxazole, and aminoglycoside resistance among Enterobacteriaceae isolated from urinary tract infections in Azerbaijan, Iran. J. Hyg. Inf. Con, 13(2): 1-6.
Zhang, S., G. Yang, Q. Ye, Q. Wu, J. Zhang, and Y. Huang. 2018. Phenotypic and genotypic characterization of Klebsiella pneumoniae isolated from retail foods in China. J. Fron. Mic, 9: 289.
Zhang, R., N. Dong, Y. Huang, H. Zhou, M. Xie, E.W. Chan, Y. Hu, J. Cai, and S. Chen. 2018 Evolution of tigecycline- and colistin-resistant CRKP (carbapenem-resistant Klebsiella pneumoniae) in vivo and its persistence in the GI tract. J. Eme. Mic. Inf, 7(1): 127.
Copyright (c) 2024 Koshini Chandramohan, Suzanita Utama, Tita Damayanti Lestari, Rimayanti, Erma Safitri, Eka Pramyrtha Hestianah, Sri Mulyati, Ratna Damayanti, Aswin Rafif Khairullah; Abdullah Hasib
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Veterinary Medicine Journal by Unair is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
1. The Journal allows the author to hold the copyright of the article without restrictions.
2. The Journal allows the author(s) to retain publishing rights without restrictions
3. The legal formal aspect of journal publication accessibility refers to Creative Commons Attribution Share-Alike (CC BY-SA).