Multi-Drug Resistant (MDR) Detection in Escherichia coli in Canary Birds (Serinus canaria) Imported from Malaysia
Downloads
The frequency of canary imports continues to increase every year. Antibiotic resistance is a global problem that threatens human and animal health worldwide. Human interaction with birds as pets is a public health concern because it has the potential to increase zoonotic diseases. This study was conducted to identify the antibiotic resistance of E. coli using fecal swab samples of imported canaries from Malaysia. Samples were grown on an EMBA medium for the isolation test, Gram staining test, and IMViC test were performed to continue the identification test -Kirby-Bauer diffusion test - to determine antibiotic sensitivity. Based on morphological culture, Gram staining, and biochemical tests, the sample examination results showed 18% (27/150) were positive for E. coli, 16% (24/150) showed the highest resistance to tetracycline, 15,33% (23/150) amoxicillin, 12,66% (19/150) trimethoprim-sulfamethoxazole, 6% (9/150) ciprofloxacin, and 14,66% (22/150) isolates were confirmed MDR because they were resistant to three to four antibiotics. Further efforts are needed to understand and address the factors that lead to antibiotic resistance in the context of animal and public health. Prudent management of antibiotic use and monitoring of antibiotic resistance needs to be improved to maintain animal health and prevent the risk of transmission of resistant bacteria to humans.
Agustanty, A., and Andre, B., 2022. Resistance Pattern of Vibrio cholerae Bacteria to Ciprofloxacin and Tetracycline Antibiotics. J. Heal. Sci., 6(1), pp.73-78. https://doi.org/10.35971/gojhes.v5i3.13611
Ahmed, H.A., Awad, N.F.S., Abd El-Hamid, M.I., Shaker, A., Mohamed, R.E., and Elsohaby, I., 2021. Pet birds as potential reservoirs of virulent and antibiotic-resistant zoonotic bacteria. J. Comp. Immunol.. Microbiol. Infect. Dis., 75(1), pp.55. https://doi.org/10.1016/j.cimid.2020.101606
Aklilu, E., Harun, A., and Singh, K.K.B., 2022. Molecular characterization of blaNDM, blaOXA-48 , mcr-1, and blaTEM-52 positive and concurrently carbapenem and colistin-resistant and extended-spectrum beta-lactamase-producing Escherichia coli in chicken in Malaysia. J. Bmc. Vet. Res., 18(1), pp.1–10. https://doi.org/10.1186/s12917-022-03292-7
Al-Mustapha, A., Adetunji, V., and Heikinheimo, A., 2020. Risk perceptions of antibiotic usage and resistance: a cross-sectional survey of poultry farmers in Kwara state Nigeria. J. Ant., 9(7), pp.378. https://doi.org/10.3390/antibiotics9070378
Al-Mustapha, A.I., Raufu, I.A., Ogundijo, O.A., Odetokun, I.A., Tiwari, A., Brouwer, M.S.M., Adetunji, V., and Heikinheimo, A., 2023. Antibiotic resistance genes, mobile elements, virulence genes, and phages in cultivated ESBL-producing Escherichia coli of poultry origin in Kwara State, North Central Nigeria. J. Food. Mic., 389(1), pp. 25. https://doi.org/10.1016/j.ijfoodmicro.2023.110086
Anggita, D., Siti, N., and Edward, P.W., 2022. Mechanism of Action of Antibiotics. J. Med., 7(1), pp.46-58.
Ansharieta, R., Ramandinianto, S.C., Effendi, M.H., and Plumeriastuti, H., 2021. Molecular identification of blaCTX-M and blaTEM genes encoding extended-spectrum ß-lactamase (ESBL) producing Escherichia coli isolated from raw cow milk in East Java, Indonesia. Biodiversitas, 22(4), pp.1600–1605. https://doi.org/10.13057/biodiv/d220402
Apriliani, N.P.E.U., and Pinatih, K.J.P., 2017. Prevalence of blaCTX-M-1 Gene Group in Klebsiella pneumoniae at Sanglah Central General Hospital, Denpasar. J. Med., 6(2), pp.1-7.
Aslam, B., Wang, W., Arshad, M.I., Khurshid, M., Muzammil, S., and Rasool, M.H., 2018. Antibiotic resistance: an overview of the global crisis. J. Infect. Drug. Resist., 11(1), pp.1645-1658. DOI https://doi.org/10.2147/IDR.S173867
Aworh, M.K., Kwaga, J.K.P., Hendriksen, R. S, Okolocha, E. C, and Thakur., S., 2021. Genetic relatedness of multidrug-resistant Escherichia coli isolated from humans, chickens, and poultry environments. Antimicrob. Resist. Infect. Control., 10 (58), pp.1-13. https://doi.org/10.1186/s13756-021-00930-x
Ayandiran, T., Falgenhauer, L., Schmiedel, J., Chakraborty, T., and Ayeni, F., 2018. High resistance to tetracycline and ciprofloxacin in bacteria isolated from poultry farms in Ibadan, Nigeria. J. Infect. Dev. Ctries., 12 (6), pp.462–470. DOI: https://doi.org/10.3855/jidc.9862
Ayeni, F., Falgenhauer, J., Schmiedel, J., Schwengers, O., Chakraborty, T., and Falgenhauer, L., 2020. Detection of blaCTX-M-27-encoding Escherichia coli ST206 in Nigerian poultry stocks. J. Ant. Chem., 75(10), pp.3070–3072. https://doi.org/10.1093/jac/dkaa293
Bottery, M.J., Pitchford, J.W., and Friman, V.P., 2021. Ecology and evolution of antimicrobial resistance in bacterial communities. J. ISME., 15(4), pp.939-948. https://doi.org/10.1038/s41396-020-00832-7
Bren, A., Park, J.O., Towbin, B.D., Dekel, E., Rabinowitz, J.D., and Alon, U., 2016. Glucose being one of the worst carbon sources for Escherichia coli on a poor nitrogen source due to its suboptimal levels. J. Camp. Sci., 6(1), pp.24834. https://doi.org/10.1038/srep24834
Calero-Cáceres, W., Méndez, J., Martín-Díaz, J., and Muniesa, M., 2017. The occurrence of antibiotic resistance genes in a Mediterranean river and their persistence in the riverbed sediment. J. Env. Pol., 223, pp.384-394. https://doi.org/10.1016/j.envpol.2017.01.035
Chen, C.H., Hsieh, C.H., and Hwang, D.F., 2017. PCR-RFLP analysis using capillary electrophoresis for species identification of Cyprinidae-related products. J. Food. Cont., 33(2), pp.477–483. https://doi.org/10.1016/j.foodcont.2013.03.036
Dalazen, G., Fuentes-Castillo, D., Pedroso, L.G., Fontana, H., Sano, E., Cardoso, B., and Lincopan, N., 2023. CTX-M-producing Escherichia coli ST602 carrying a wide resistome in South American wild birds: Another pandemic clone of one health concern. One Health, 6(2), pp.100586. https://doi.org/10.1016/j.onehlt.2023.100586
Diren Sigirci, B., Celik, B., Halac, B., Adiguzel, M.C., Kekec, I., Metiner, K., Ikiz, S., Bagcigil, A.F., Ozgur, N.Y., and Kahraman., B.B., 2020. Antimicrobial resistance profiles of Escherichia coli isolated from companion birds. J. Kin. Saud. Univ. Sci., 32(1), pp.1069–1073. https://doi.org/10.1155/2021/6759046
Effendi, M.H., Hartadi, E.B., Witaningrum, A.M., Permatasari, D.A., and Ugbo, E.N., 2022. Molecular identification of blaTEM gen of extended-spectrum beta-lactamase-producing Escherichia coli from healthy pigs in Malang district, East Java, Indonesia. J. Adv. Vet. Anim. Res., 9(3), pp.447-457. https://doi.org/10.5455/javar.2022.i613
Förster, A.H., and Gescher, J., 2014. Metabolic engineering of Escherichia coli for production of mixed acid fermentation end products. Front Bioeng Biotechnol., 2(1), pp.16. https://doi.org/10.3389/fbioe.2014.00016
Fuentes-Castillo, D., Farfán-López, M., Esposito, F., Moura, Q., Fernandes, M.R., Lopes, R., Cardoso, B., Muñoz, M.E., Cerdeira, L., Najle, I., Muñoz, P.M., Catão-Dias, J.S., and González-Acuña, D., Lincopan, N., 2019., Wild owls colonized by international clones of a broad-spectrum β-lactamase (CTX-M) produce Escherichia coli and Salmonella infantis in the American southern cone. Sci. Total. Environ., 674, pp. 554-562. https://doi.org/10.1016/j.scitotenv.2019.04.149
Harijani, N., Oetama, S.J.T., Soepranianondo, K., Effendi, M.H., and Tyasningsih, W., 2020. Biological hazard on multidrug resistance (MDR) of Escherichia coli collected from a cloacal swab of broiler chicken on wet markets Surabaya. Indian Journal of Forensic Medicine & Toxicology, 14(4), pp.3239– 3244. https://doi.org/10.37506/ijfmt.v14i4.12125
Holmes, A.H., Moore, L.S., Sundsfjord, A., Steinbakk, M., Regmi, S., Karkey, A., and Piddock, L.J., 2016. Understanding the mechanisms and drivers of antimicrobial resistance. Lancet, 387(10014), pp.176–187. https://doi.org/10.1016/s0140-6736(15)00473-0
Hughes, D.T., Clarke, M.B., Yamamoto, K., Rasko, D.A., and Sperandio, V., 2009. The QseC adrenergic signaling cascade in enterohemorrhagic E. coli (EHEC). PLoS. Pathog., 5(8), pp.1000553. https://doi.org/10.1371/journal.ppat.1000553
Ikhimiukor, O.O., Odih, E. E., Donado-Godoy, P., and Okeke, I., 2022. A bottom-up view of antimicrobial resistance transmission in developing countries. Nat. Microbiol., 7(6), pp.757–765. https://doi.org/10.1038/s41564-022-01124-w
Islam, M.S., Rahman, A.T., Hassan, J., and Rahman, M.T., 2023. Extended-spectrum beta-lactamase in Escherichia coli isolated from humans, animals, and environments in Bangladesh: A One Health perspective systematic review and meta-analysis. One Health, 6(1), pp.10526. https://doi.org/10.1016/j.onehlt.2023.100526
Indana, K., Effendi, M.H., and Soeharsono, S., 2020. Uji Resistensi antibiotic Ampicillin Pada bakteri Escherichia coli Yang Diisolasi Dari Beberapa Peternakan di Surabaya. Jurnal Peternakan Lingkungan Tropis, 3(1), pp. 37-43.
Jayan, H., Pu, H., and Sun, D.W., 2022. Detection of bioactive metabolites in Escherichia coli cultures using surface-enhanced Raman spectroscopy. Applied Spectroscopy, 76(7), pp.812-822.
Kobayashi, H., Kanazaki, M., Hata, E., and Kubo., M., 2009. Prevalence and characteristics of eae-and stx-positive strains of Escherichia coli from wild birds in the immediate environment of Tokyo Bay. J. Appl. Environ. Microbiol., 75(1), pp.292-295. https://doi.org/10.1128/aem.01534-08
Landecker, H. 2016. Antibiotic resistance and the biology of history. Body & Society, 22(4), pp.19-52.
Li, B., and Webster, T.J., 2018. Bacterial antibiotic resistance: new challenges and opportunities for implant-related orthopedic infections. J. Orthop. Res., 36(1), pp.22-32. https://doi.org/10.1002/jor.23656
Maida, S., and Kinanti, A.P.L., 2019. Aktivitas Antibakteri Amoksisilin terhadap bakteri Gram Positif dan Gram Negatif. Jurnal Pijar MIPA, 14(3), pp.189-191.
Mohamed, M.Y.I., Abu, J., Zakaria, Z., Khan, A.R., Abdul Aziz, S., Bitrus, A.A., and Habib, I., 2022. Multi-Drug Resistant Pathogenic Escherichia coli Isolated from Wild Birds, Chicken, and the Environment in Malaysia. Antibiotics, 11(10), pp.1-14. https://doi.org/10.3390/antibiotics11101275
Melo, L.C., Haenni, M., Saras, E., Cerdeira, L., Moura, Q., Boulouis, H.J., and Madec, J.Y., Lincopan, N., 2019. Genomic characterization of multidrug-resistant extended-spectrum β-lactamase-positive TEM-52b Escherichia coli ST219 isolated from a cat in France. J. Glob. Antimicrob. Resist., 18(1), pp.223–224. https://doi.org/10.3390/microorganisms11020525
Ojo, O. E., Schwarz, S., and Michael, G.B., 2016. Detection and characterization of extended-spectrum β-lactamase-producing Escherichia coli from chicken production chains in Nigeria. Vet. Microbiol., 194(2), pp.62–68. https://doi.org/10.1016/j.vetmic.2016.04.022
O'Nei, J., 2016. Tackling drug-resistant infections globally: final report and recommendations. The review on Antimicrobial Resistance. https://amr-review.org/sites/default/files/160518_Final%20paper_with%20cover.pdf
Ong, K.H., Khor, W.C., Quek, J.Y., Low, Z.X., Arivalan, S., Humaidi, M., Chua, C., Seow, KL.G., Guo, S., Tay, M.Y.F., Schlundt, J., Ng, L.C., and Aung, K.T., 2020. Occurrence and antimicrobial resistance traits of Escherichia coli from wild birds and rodents in Singapore. Int. J. Environ. Res. Public. Health., 17(15), pp.1-17. https://doi.org/10.3390/ijerph17155606
Oteo, J., Menciá, A., Bautista, V., Pastor, N., Lara, N., González-González, F., Garciá-Penã, F.J., and Campos, J., 2018. Colonization with Enterobacteriaceae-producing ESBLs, AmpCs, and OXA-48 in wild avian species, Spain 2015-2016. Microb. Drug. Resist., 24(7), pp.932–938. https://doi.org/10.1089/mdr.2018.0004
Rahmahani, J., Salamah, Mufasirin, Tyasningsih, W., and Effendi, M.H., 2020. Antimicrobial resistance profile of Escherichia coli from cloacal swabs of native chicken in Surabaya traditional market. Biochemical and Cellular Archives, 20(1), pp.2993-2997. http://dx.doi.org/10.35124/bca.2020.20.S1.2993
Rombouts, J.L., Kranendonk, E.M.M., Regueira, A., Weissbrodt, D.G., Kleerebezem, R., and Van Loosdrecht, M.C.M., 2020. Selecting bacteria that produce and utilize lactic acid in anaerobic enrichment cultures. Biotechnol. Bioeng., 117(5), pp.1281-1293. https://doi.org/10.1002/bit.27301
Sari, P.A., Erly, E., and Arisanty. D. 2015. Perbandingan Efektivitas Daya Hambat Kotrimoksazol Generik dan Paten Terhadap Pertumbuhan Bakteri Escherichia coli Sebagai Penyebab Infeksi Saluran Kemih Secara in Vitro. Andalas Journal of Health, 4(1), pp.227-232.
Syari’ati, A., Arshadi, M., Khosrojerdi, M.A., Abedinzadeh, M., Ganjalishahi, M., Maleki, A., Heidary, M., and Khoshnood, S., 2022. The resistance mechanisms of bacteria against ciprofloxacin and new approaches for enhancing the efficacy of this antibiotic. Front Public Health, 10, pp.1025633 https://doi.org/10.3389/fpubh.2022.1025633
Simanjuntak, H.A., Simanjuntak, H., Maimunah, S., Rahmiati, R., and Situmorang, T.S., 2022. Zone of Inhibition Diameter of Amoxicillin and Tetracycline Antibiotics against Escherichia coli. Herbal Medicine Journal, 5(2), pp.55-59. https://doi.org/10.58996/hmj.v5i2.52
Silva, A.C., Nogueira, P.J., and Paiva, J.A., 2021. Determinants of antimicrobial resistance among the different European countries: more than human and animal antimicrobial consumption. Antibiotics (Basel), 10(7), pp.834. https://doi.org/10.3390/antibiotics10070834
Tama, S.C., Ngwai, Y.B., Pennap, G.R.I., Nkene, I.H., and Abimiku, R.H, 2021. Molecular detection of extended Spectrum Beta-lactamase resistance in Escherichia coli from poultry droppings in Karu, Nasarawa State Nigeria. Int. J. Pathog. Res., 6(4), pp.31–42. https://doi.org/10.9734/ijpr/2021/v6i430169
Varriale, L., Dipineto, L., Russo, T.P., Borrelli, L., Romano, V., D’orazio, S., Pace, A., Menna, L.F., Fioretti, A., and Santaniello, A., 2020. Antimicrobial resistance of Escherichia coli and Pseudomonas aeruginosa from companion birds. Antibiotics (Basel), 9(11), pp.780. https://doi.org/10.3390/antibiotics9110780
Word Health Organization. 2023. Antimicrobial resistance. https://www-who-int.translate.goog/news-room/fact-sheets/detail/antimicrobial-resistance?_x_tr_sl=en&_x_tr_tl=id&_x_tr_hl=id&_x_tr_pto=tc
Xia, J., Sun, J., Cheng, K., Li, L., Fang, L.X., and Zou, M.T., Liao, X.P., Liu, Y.H., 2016. Persistent spread of the rmtB 16S rRNA methyltransferase gene among Escherichia coli isolates from diseased food-producing animals in China. Veterinary Microbiology, 188(2), pp.41–46. https://doi.org/10.1016/j.vetmic.2016.03.018
Yanestria, S.M., Dameanti, F.N.A.E.P., Musayannah, B.G., Pratama, J.W.A., Witaningrum, A.M., Effendi, M.H., and Ugbo, E.N., 2022. Antibiotic resistance patterns of extended-spectrum β-lactamase (ESBL) producing Escherichia coli isolated from environmental broiler farms in Pasuruan District, Indonesia. Biodiversitas, 23(9), pp.4460-4465. https://doi.org/10.13057/biodiv/d230911
Yılmaz, E.Ş., and Dolar, A., 2017. Detection of Extended-Spectrum β-Lactamases in Escherichia coli From Cage Birds. J. Exot. Pet. Med., 26(1), pp.13–18. https://doi.org/10.1053/j.jepm.2016.10.008
Yilmaz, E.S., and Guvensen, N.C., 2016. In vitro, biofilm formation in ESBL-producing Escherichia coli isolates from cage birds. Asian Pac J Trop Med., 9(11), pp.1069-1074.
Zarei-Baygi, A., and Smith, A.L., 2021. Intracellular versus extracellular antibiotic resistance genes in the environment: prevalence, horizontal transfer, and mitigation strategies. Bioresour Technol., 319, pp.124181. https://doi.org/10.1016/j.biortech.2020.124181
Zlatkov, N., and Uhlin, B.E., 2019. Absence of global stress regulation in Escherichia coli drives pathoadaptation and c-di-GMP-dependent metabolic capabilities. Sci Rep., 9(1), pp.2600. https://doi.org/10.1038/s41598-019-39580-w
Zawack, K., Li, M., Booth, J.G., Love, W., Lanzas, C., and Grohn, Y.T., 2016. Monitoring antimicrobial resistance in the food supply chain and its implications for FDA policy initiatives. Antimicrob Agents Chemother, 60(9), pp.5302-5311. https://doi.org/10.1128/aac.00688-16
Copyright (c) 2025 izzatul istiana izzatul, Mustofa Helmi Effendi

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Veterinary Medicine Journal by Unair is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
1. The Journal allows the author to hold the copyright of the article without restrictions.
2. The Journal allows the author(s) to retain publishing rights without restrictions
3. The legal formal aspect of journal publication accessibility refers to Creative Commons Attribution Share-Alike (CC BY-SA).